Skip to main content
Log in

Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric assay was developed for the determination of copper(II) ion based on its quenching effect on the green fluorescent probe of SiO2-anchored CdS nanocrystals (SiO2/CdS NCs). The fluorescent probe was prepared by a surface ion-directing strategy for homogeneous precipitation of CdS NCs onto the carboxyl-capped SiO2 core surfaces. In comparison to CdS NCs, the SiO2/CdS NCs has strong fluorescence emission and good photostability. Moreover, SiO2/CdS NCs show higher fluorescence selectivity for copper(II) ions than for other common metal ions because copper(II) ions have a strong fluorescence quenching effect on SiO2/CdS NCs. At excitation/emission wavelengths of 300/516 nm, the resulting fluorescent probe shows wide linear ranges from 0.01 to 2 μM with a detection limit of 6.3 nM for copper(II) ions. The method has been applied to the determination of trace copper(II) ions in tea infusions with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bekhradnia A, Ghanbarimasir Z (2016) A novel sensitive fluorescent coumarin-based chemosensor for detection of copper ion. Pharm Anal Acta 7:461–464

    Google Scholar 

  2. Liu S, Wang Y, Han J (2017) Fluorescent chemosensors for copper(II) ion: structure, mechanism and application. J Photochem Photobiol C 32:78–103

    Google Scholar 

  3. Kumawat LK, Mergu N, Singh AK, Gupta VK (2015) A novel optical sensor for copper ions based on phthalocyanine tetrasulfonic acid. Sensors Actuators B 212:389–394

    CAS  Google Scholar 

  4. Su Y, Lan G, Chen W, Chang H (2010) Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem 82:8566–8572

    CAS  PubMed  Google Scholar 

  5. Chan MS, Huang SD (2000) Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with zeeman-effect background corrector. Talanta 51:373–380

    CAS  PubMed  Google Scholar 

  6. Wu J, Boyle EA (1997) Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. Anal Chem 69:2464–2470

    CAS  PubMed  Google Scholar 

  7. Shah A, Sultan S, Shah AH, Nayab S, Khan GS, Hussain H (2017) An electrochemical sensing platform for the trace level detection of copper. J Electrochem Soc 164:B184–B188

    CAS  Google Scholar 

  8. Wei H, Pan D, Hu X, Liu M, Han H, Shen D (2018) Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@MnO2 core-shell microspheres. Microchim Acta 185:258–266

    Google Scholar 

  9. Shao H, Wen X, Ding Y, Hong X, Zhao H (2019) Colorimetric determination of copper (II) by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Microchim Acta 186(11):701–710

    Google Scholar 

  10. Krämer R (1998) Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew Chem Int Ed 37:772–773

    Google Scholar 

  11. Zhang S, Yu T, Sun M, Yu H, Zhang Z, Wang S, Jiang H (2014) Highly sensitive and selective fluorescence detection of copper(II) ion based on multi-ligand metal chelation. Talanta 126:185–190

    CAS  PubMed  Google Scholar 

  12. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14:406–409

    CAS  PubMed  Google Scholar 

  13. Xu G, Wang J, Si G, Wang M, Xue X, Wu B, Zhou S (2016) A novel highly selective chemosensor based on curcumin for detection of Cu2+ and its application for bioimaging. Sensors Actuators B Chem 230:684–689

    CAS  Google Scholar 

  14. Berlina AN, Zherdev AV, Dzantiev BB (2019) Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Microchim Acta 186(3):172–210

    Google Scholar 

  15. Zhao L, Li H, Xu Y, Liu H, Zhou T, Huang N, Li Y, Ding L (2018) Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal Bioanal Chem 410:4301–4309

    CAS  PubMed  Google Scholar 

  16. Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71

    CAS  PubMed  Google Scholar 

  17. Yuan C, Zhang K, Zhang Z, Wang S (2012) Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Anal Chem 84:9792–9801

    CAS  PubMed  Google Scholar 

  18. Zou WS, Deng MY, Wang YQ, Zhao X, Li WH, Huang XH (2019) Alginate capped and manganese doped ZnS quantum dots as a phosphorescent probe for time-resolved detection of copper(II). Microchim Acta 186(1):41–49

    Google Scholar 

  19. Sang F, Zhang X, Shen F (2019) Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Microchim Acta 186(6):373–381

    Google Scholar 

  20. Chen B, Zhong P (2005) A new determining method of copper(II) ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986–992

    Google Scholar 

  21. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    CAS  PubMed  Google Scholar 

  22. Wang J, Yu J, Wang X, Wang L, Li B, Shen D, Kang Q, Chen L (2018) Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper (II). Microchim Acta 185:420–432

    Google Scholar 

  23. Zhang YH, Zhang HS, Guo XF, Wang H (2008) L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (II) determination. Microchem J 89:142–147

    CAS  Google Scholar 

  24. Xie HY, Liang JG, Zhang ZL, Liu Y, He ZK, Pang DW (2004) Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta A 60:2527–2530

    Google Scholar 

  25. Fernandez-Argueelles MT, Jin WJ, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta 549:20–25

    CAS  Google Scholar 

  26. Koneswaran M, Narayanaswamy R (2009) L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B 139:104–109

    CAS  Google Scholar 

  27. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75:215–221

    CAS  PubMed  Google Scholar 

  28. Liang JG, Ai XP, He ZK, Pang DW (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 129:619–622

    CAS  PubMed  Google Scholar 

  29. Chen X, Lu Q, Liu D, Wu C, Liu M, Zhang Y, Yao S (2018) Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta 185:188–194

    Google Scholar 

  30. Wang H, Xu Q, Zheng X, Han WQ, Zheng JT, Jiang B, Xue QZ, Wu MB (2014) Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids. J Nanopart Res 16:2794–2808

    Google Scholar 

  31. Dong B, Cao L, Su G, Liu W, Qu H, Jiang D (2009) Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions. J Colloid Interface Sci 339:78–82

    CAS  PubMed  Google Scholar 

  32. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed 43:5393–5396

    CAS  Google Scholar 

  33. Rogach AL, Nagesha D, Ostrander JW, Giersig M, Kotov NA (2000) “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 12:2676–2685

    CAS  Google Scholar 

  34. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871

    CAS  Google Scholar 

  35. Yang YH, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354–2357

    CAS  Google Scholar 

  36. Darbandi M, Thomann R, Nann T (2005) Single quantum dots in dilica spheres by microemulsion synthesis. Chem Mater 17:5720–5725

    CAS  Google Scholar 

  37. Wang XF, Zhou Y, Xu JJ, Chen HY (2009) Signal-on electrochemiluminescence biosensors based on CdS–carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv Funct Mater 19:1444–1450

    CAS  Google Scholar 

  38. Huang KJ, Rajendran P, Liddell CM (2007) Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene. J Colloid Interface Sci 308(1):112–120

    CAS  PubMed  Google Scholar 

  39. Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S, Möhwald H, Eychmüller A, Weller H (2000) Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-lm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv Mater 12(5):333–337

    CAS  Google Scholar 

  40. Sun J, Zhuang J, Guan SI, Yang W (2008) Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. J Nanopart Res 10:653–658

    CAS  Google Scholar 

  41. Stöber W, Finker A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Google Scholar 

  42. Baek SH, Chang WJ, Baek JY, Yoon DS, Bashir R, Lee SW (2009) Dielectrophoretic technique for measurement of chemical and biological interactions. Anal Chem 81:7737–7742

    CAS  PubMed  Google Scholar 

  43. Han SK, Gu C, Zhao S, Xu S, Gong M, Li Z, Yu SH (2016) Precursor triggering synthesis of self-coupled copper sulfide polymorphs with enhanced photoelectrochemical properties. J Am Chem Soc 138:12913–12919

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project of Anhui Province (Nos. 18030701164 and 1606c08229) and the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201910376005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggen Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research highlights

• The silica-anchored cadmium sulfide nanocrystals (SiO2/CdS NCs) were fabricated by a surface ion–directing homogeneous precipitation strategy.

• The SiO2/CdS NCs exhibit strong fluorescence emission, good photostability, and high fluorescence selectivity for Cu2+.

• The SiO2/CdS NCs were successfully applied as selective fluorescent probes for the determination of Cu2+ in the infusion of tea.

Electronic supplementary material

ESM 1

(DOCX 76 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Zhong, X., Liu, Z. et al. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper(II). Microchim Acta 187, 323 (2020). https://doi.org/10.1007/s00604-020-04295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04295-7

Keywords

Navigation