Skip to main content
Log in

Gradient flows of time-dependent functionals in metric spaces and applications to PDEs

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We develop a gradient-flow theory for time-dependent functionals defined in abstract metric spaces. Global well-posedness and asymptotic behavior of solutions are provided. Conditions on functionals and metric spaces allow to consider the Wasserstein space \({\mathscr {P}}_{2}({\mathbb {R}}^{d})\) and apply the results to a large class of PDEs with time-dependent coefficients like confinement and interaction potentials. For that matter, we need to consider some residual terms, time-versions of concepts like \(\lambda \)-convexity, time-differentiability of minimizers for Moreau–Yosida approximations, and a priori estimates with explicit time-dependence for De Giorgi interpolation. Here, functionals can be unbounded from below and their sublevels need not be compact. In order to obtain strong convergence, a careful analysis is done by using a type of \(\lambda \)-convexity that changes as the time evolves. Our results can be seen as an extension of those in Ambrosio et al. (Gradient flows: in metric spaces and in the space of probability measures, Birkhäuser, Basel, 2005) to the case of time-dependent functionals and Rossi et al. (Ann Sc Norm Super Pisa Cl Sci 7(1):97–169, 2008) to functionals with noncompact sublevels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differ. Equ. 10(3), 309–360 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  3. Ambrosio, L.: Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Carrillo, J., Ferreira, L., Precioso, J.: A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. 231(1), 306–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrillo, J.A., Lisini, S., Mainini, E.: Gradient flows for non-smooth interaction potentials. Nonlinear Anal. 100, 122–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chenchiah, I.V., Rieger, M.O., Zimmer, J.: Gradient flows in asymmetric metric spaces. Nonlinear Anal. Theory Methods Appl. 71(11), 5820–5834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Giorgi, E.: New problems on minimizing movements. In: Baiocchi , C., Lions, J. L. (eds.) Boundary Value Problems for PDE and Applications, pp. 81–98. Masson (1993)

  9. De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68, 180–187 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  12. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Plank equation. SIAM J. Math Anal. 29(1), 1–717 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jun, C.: Pursuit-evasion and time-dependent gradient flow in singular spaces, Thesis (Ph.D.). University of Illinois at Urbana-Champaign, 76 p (2012)

  14. Lisini, S.: Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces. ESAIM Control Optim. Calc. Var. 15(3), 712–740 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lytchak, A.: Open map theorem for metric spaces. St. Petersburg Math. J. 16, 1017–1041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marino, A., Saccon, C., Tosques, M.: Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16(2), 281–330 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 6, 199–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mielke, A., Rossi, R., Savaré, G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Equ. 46(1), 1–2, 253–310 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mielke, A., Rossi, R., Savaré, G.: Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80(2), 381–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mielke, A., Rossi, R., Savaré, G.: Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18(9), 2107–2165 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petrelli, L., Tudorascu, A.: Variational principle for general diffusion problems. Appl. Math. Optim. 50(3), 229–257 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roche, T., Rossi, R., Stefanelli, U.: Stability results for doubly nonlinear differential inclusions by variational convergence. SIAM J. Control Optim. 52(2), 1071–1107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossi, R., Mielke, A., Savaré, G.: A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7(1), 97–169 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Rossi, R., Savaré, G.: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM Control Optim. Calc. Var. 12, 564–614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veretennikov, A.Y.: On ergodic measures for McKean–Vlasov stochastic equation, Monte Carlo and quasi-Monte Carlo methods 2004, 471–486. Springer, Berlin (2006)

    Google Scholar 

  27. Villani, C.: Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin (2009)

    Book  Google Scholar 

  28. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. F. Ferreira.

Additional information

Communicated by A. Constantin.

L. Ferreira was supported by FAPESP and CNPQ, Brazil.

J. Valencia-Guevara was supported by CNPQ, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.C.F., Valencia-Guevara, J.C. Gradient flows of time-dependent functionals in metric spaces and applications to PDEs. Monatsh Math 185, 231–268 (2018). https://doi.org/10.1007/s00605-017-1037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1037-y

Keywords

Mathematics Subject Classification

Navigation