Skip to main content
Log in

Is morphology telling the truth about the evolution of the species rich genus Peperomia (Piperaceae)?

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 30 May 2009

An Erratum to this article was published on 30 May 2009

Abstract

Peperomia is with approximately 1,600 species one of the species rich angiosperm genera. Several characters on which current infrageneric classifications are based are influenced by parallel evolution. A well-resolved molecular backbone phylogeny of the genus is needed to address evolutionary questions about morphological traits. Based on separate and combined analyses of a morphological data set and three molecular data sets, phylogenetic relationships within Peperomia are investigated with respect to character evolution. The resulting trees from different datasets are highly congruent. Morphological characters are mapped on a combined molecular tree, visualizing the contrast between previously used homoplastic characters and some newly observed characters, that can be used to delimit monophyletic groups. Length mutational events of the chloroplast dataset are coded and plotted on the respective tree, to test if indels support alternative hypothesis of relationships found in the nuclear datasets as well as the overall performance of indels compared with substitutional mutations. Our findings indicate that length distribution of indels is highest among five and six bp events. Autapomorphic and synapomorphic length mutations are most frequent in both insertions and deletions and are also more frequent independent of the length of the mutation. Concluding, independent of the length, mutations are of phylogenetic importance and should not be disregarded. None of the homoplastic indels turn into synapomorphic indels, supporting the different topology of the nrDNA tree but indicate areas of molecular evolution in favour of length mutations resulting in independent events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figs. 4–9
Figs. 10–15
Figs. 16–24

Similar content being viewed by others

References

  • APG [=Angiosperm Phylogeny Group] II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec Phylogenet Evol 1:3–16

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG (1993) Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequence of nuclear ribosomal DNA: chromosomal and morphological evolution re-examined. Amer J Bot 80:222–238

    Article  CAS  Google Scholar 

  • Berry PE, Hipp AL, Wurdack KJ, Van Ee B, Riina R (2005) Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnL-trnF DNA sequence data. Amer J Bot 92:1520–1534

    Article  CAS  Google Scholar 

  • Bradley U (2002) Biogeography and speciation of the genus Peperomia Ruiz & Pavón in Eastern Polynesia, Ph.D. thesis. University of Dublin, Trinity College

  • Bruyns PV, Mapaya JR, Hedderson T (2006) A new subgeneric classification for Euphorbia (Euphorbiaceae) in southern Africa based on ITS and psbA-trnH sequence data. Taxon 55:397–420

    Google Scholar 

  • Burger W (1971) Flora Costaricensis (family 41 Piperaceae). Fieldiana Botany 35:5–79

    Google Scholar 

  • Dahlstedt H (1900) Studien über süd- und central-amerikanische Peperomien mit besonderer Berücksichtigung der brasilianischen Sippen. Kongl Svenska Vetenskapsakad Handl 33:1–218

    Google Scholar 

  • de Candolle C (1923) Piperacearum clavis analytica. Candollea 1:286–415

    Google Scholar 

  • de Figueiredo RA, Sazima M (2000) Pollination biology of Piperaceae species in Southeastern Brazil. Ann Bot 85:455–460

    Article  Google Scholar 

  • de Figueiredo RA, Sazima M (2004) Pollination ecology and resource partitioning in neotropical pipers. In: Dyer LA, Palmer ADN (eds) Piper: a model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic/Plenum Publishers, New York, pp 33–57

    Google Scholar 

  • de Figueiredo RA, Sazima M (2007) Phenology and pollination biology of eight Peperomia species (Piperaceae) in semideciduous forests in Southeastern Brazil. Pl Biol 9:136–141

    Article  Google Scholar 

  • Dyer LA, Richards J, Dodson C (2004) Isolation, synthesis, and evolutionary ecology of Piper amides. In: Dyer LA, Palmer ADN (eds) Piper: a model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic/Plenum Publishers, New York, pp 117–139

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fleming TH (2004) Dispersal ecology of neotropical Piper shrubs and treelets. In: Dyer LA, Palmer ADN (eds) Piper: a model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic/Plenum Publishers, New York, pp 58–77

    Google Scholar 

  • Forrest LL, Hughes M, Hollingsworth PM (2005) A phylogeny of Begonia using nuclear ribosomal sequence data and morphological characters. Syst Bot 30:671–682

    Article  Google Scholar 

  • Frodin DG (2004) History and concepts of big plant genera. Taxon 53:753–776

    Article  Google Scholar 

  • Henschen SE (1873) Études sur le genre Peperomia comprenant les espéces de Caldas, Brésil. Nova Acta Regiae Soc. Sci Upsal Ser 3, 8:53 p

    Google Scholar 

  • Hill AW (1907) A revision of the geophilous species of Peperomia with some additional notes on their morphology and seedling structure. Ann Bot 21:141–160

    Google Scholar 

  • Igersheim A, Endress PK (1998) Gynoecium diversity and systematics of paleoherbs. Bot J Linn Soc 127:289–370

    Article  Google Scholar 

  • Janssens S, Geuten K, Yuan Y-M, Song Y, Küpfer P, Smets E (2006) Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL sequences. Syst Bot 31:171–180

    Article  Google Scholar 

  • Jaramillo MA, Manos PS (2001) Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Amer J Bot 88:706–716

    Article  CAS  Google Scholar 

  • Kaul RB (1977) The role of the multiple epidermis in foliar succulence of Peperomia. Bot Gaz 138:213–218

    Article  Google Scholar 

  • Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA (1998) The phylogenetic potential of entire 26S rDNA sequences in plants. Molec Biol Evol 15:251–263

    PubMed  CAS  Google Scholar 

  • Lei LG, Liang HX (1999) Variations in floral development in Peperomia (Piperaceae) and their taxonomic implications. Bot Jahrb Syst 131:423–431

    Google Scholar 

  • Letourneau DK (2004) Mutualism, antiherbivore defense, and trophic cascades: Piper ant-plants as a microcosm for experimentation. In: Dyer LA, Palmer ADN (eds) Piper: a model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic/Plenum Publishers, New York, pp 5–32

    Google Scholar 

  • Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec Biol Evol 22:317–332

    Article  PubMed  CAS  Google Scholar 

  • Mathieu G, Samain MS, Reynders M, Goetghebeur P (2008) The Peperomia species (Piperaceae) with pseudo-epiphyllous inflorescences. Bot J Linn Soc 157:177–196

    Article  Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JA, Turland NJ (eds) (2006) International code of botanical nomenclature (Vienna code) adopted by the seventeenth International Botanical Congress, Vienna, Austria, July 2005. Koeltz Scientific Books, Königstein [Regnum Veg. 146]

  • Miquel FAW (1840) Commentarii Phytogeographici. Leiden

  • Miquel FAW (1843a) Over eenige nieuwe geslachten uit de familie der Piperaceën. Verslagen Meded Kon Ned Inst Wetensch 1842:80–84

    Google Scholar 

  • Miquel FAW (1843b) Systema Piperacearum. HA Kramers, Rotterdam

  • Monro AK (2006) The revision of species-rich genera: a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA and morphology. Amer J Bot 93:426–441

    Article  CAS  Google Scholar 

  • Müller K (2004) PRAP—computation of Bremer support for large data sets. Molec Phylogenet Evol 31:780–782

    Article  PubMed  Google Scholar 

  • Müller K (2005) SeqState -primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics 4:65–69

    Article  PubMed  Google Scholar 

  • Müller J, Müller K (2004) TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Molecular Ecology Notes 4:786–788

    Article  Google Scholar 

  • Müller K, Quandt D, Müller J, Neinhuis C (2005) Phyde®—phylogenetic data editor. Program distributed by the authors. http:\\www.phyde.de

  • Murty YS (1952) Placentation in Peperomia. Phytomorphology 2:132–134

    Google Scholar 

  • Murty YS (1958) A contribution to the study of vascular anatomy of the flower of Peperomia. J Indian Bot Soc 37:156–171

    Google Scholar 

  • Murty YS (1959) A contribution to the study of floral morphology of some species of Peperomia. J Indian Bot Soc 38:474–491

    Google Scholar 

  • Neinhuis C, Wanke S, Hilu KW, Müller K, Borsch T (2005) Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Pl Syst Evol 250:7–26

    Article  Google Scholar 

  • Nixon K (2002) Winclada ver. 1.00.08. Published by the author, Ithaca

  • Pelser P, Gravendeel B, van der Meijden R (2002) Tackling speciose genera: species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceae) based on plastid and nrDNA sequences. Amer J Bot 89:929–939

    Article  CAS  Google Scholar 

  • Pino GE (2004) Peperomias de Cajamarca. Master thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru: 75 p

  • Posada D, Crandall A (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–817

    Article  PubMed  CAS  Google Scholar 

  • Remizowa M, Rudall PJ, Sokoloff D (2005) Evolutionary transitions among flowers of perianthless Piperales: inferences from inflorescence and flower development in the anomalous species Peperomia fraseri (Piperaceae). Int J Pl Sci 166:925–943

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rowley GD (2002) The window-leafed Peperomias. Brit Cactus Succ J 20:43–49

    Google Scholar 

  • Samain M-S, Mathieu G, Vanderschaeve L, Wanke S, Neinhuis C, Goetghebeur P (2007) Nomenclature and typification of subdivisional names of the genus Peperomia (Piperaceae). Taxon 56:229–236

    Google Scholar 

  • Samain MS, Wanke S, Mathieu G, Neinhuis C, Goetghebeur P (2008) Verhuellia revisited–unravelling an intricate taxonomical history and a new subfamilial classification of Piperaceae. Taxon 57:583–587

    Google Scholar 

  • Sanderson MJ, Wojciechowski MF (1996) Diversification rates in a temperate legume clade: are there “so many species” of Astragalus (Fabaceae)? Amer J Bot 83:1488–1502

    Article  Google Scholar 

  • Sastrapradja SN (1968) On the morphology of the flower in Peperomia (Piperaceae) species. Ann Bogor 4:235–244

    Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Semple KS (1974) Pollination in Piperaceae. Ann Missouri Bot Gard 61:868–871

    Article  Google Scholar 

  • Skottsberg C (1947) Peperomia berteroana Miq. and P. tristanensis Christoph., an interesting case of disjunction. Acta Horti Gotob 16:251–288

    Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Austral Syst Bot 17:145–170

    Article  CAS  Google Scholar 

  • Smith JF, Stevens AC, Davidson C (2008) Placing the origin of two species-rich genera in the late Cretaceous with later species divergence in the Tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). Pl Syst Evol doi:10.1007/s00606-008-0056-5

  • Sodiro RPL (1900) Piperaceas Ecuatorianas. Contributiones de la Flora Ecuatoriana-Monografia 1:64–145

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tebbs MC (1993) Piperaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Vol 2: flowering plants–Dicotyledons–Magnoliid, Hamamelid and Caryophyllid families. Springer, Berlin

    Google Scholar 

  • Thies W, Kalko EKV (2004) Phenology of neotropical pepper plants (Piperaceae) and their assocation with their main dispersers, two short-tailed fruit bats, Carollia perspicilata and C. castanea (Phyllostomidae). Oikos 105:362–376

    Article  Google Scholar 

  • Trelease W (1930) The geography of American peppers. Proc Amer Philos Soc 69:309–327

    Google Scholar 

  • Trelease W, Yuncker TG (1950) The Piperaceae of Northern South America. University of Illinois Press, Urbana

    Google Scholar 

  • Tucker SC (1980) Inflorescence and floral development in the Piperaceae—1: Peperomia. Amer J Bot 67:686–702

    Article  Google Scholar 

  • van Ham RCHJ, ‘t Hart H, Mes THM, Sandbrink JM (1994) Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 25:558–566

    Article  PubMed  Google Scholar 

  • Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C (2007a) Evolution of the Piperales—matK and trnK intron sequence data reveal lineage specific resolution contrast. Molec Phylogenet Evol 42:477–497

    Article  PubMed  CAS  Google Scholar 

  • Wanke S, Vanderschaeve L, Mathieu G, Neinhuis C, Goetghebeur P, Samain MS (2007b) From forgotten taxon to a missing link? The position of the genus Verhuellia (Piperaceae) revealed by molecules. Ann Bot 99:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Wanke S, Samain M-S, Vanderschaeve L, Mathieu G, Goetghebeur P, Neinhuis C (2006) Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Pl Biol 8:93–102

    Article  CAS  Google Scholar 

  • Yuncker TG (1933) Revision of the Hawaiian species of Peperomia. Bernice P Bishop Mus Bull 112:3–131

    Google Scholar 

  • Yuncker TG (1949a) The Cuban species of Peperomia I. Revista Soc Cub Bot 6:5–33

    Google Scholar 

  • Yuncker TG (1949b) The Cuban species of Peperomia II. Revista Soc Cub Bot 6:20–54

    Google Scholar 

  • Yuncker TG (1950) Flora of panama. Ann Missouri Bot Gard 37:1–120

    Article  Google Scholar 

  • Yuncker TG (1953) The Piperaceae of Argentina, Bolivia and Chile. Lilloa 27:97–303

    Google Scholar 

  • Yuncker TG (1966) New species of Piperaceae from Brazil. Bol Inst Bot (São Paulo) 3:140–195

    Google Scholar 

  • Yuncker TG (1974) The Piperaceae of Brasil III. Peperomia: taxa of uncertain status. Hoehnea 4:71–413

    Google Scholar 

Download references

Acknowledgments

Financial support for this study came from the Research Foundation-Flanders (FWO G.0172.07), the German Science Foundation (DFG NE 681/5-1), the Department of Biology, Ghent University (travel grant to MS), the Special Research Fund (BOF, Ghent University) (grant to LV) and the Friends of the Botanical Garden, Ghent. During the preparation of this manuscript, the last author was supported by the German Academic Exchange (DAAD) Postdoc program, which is gratefully acknowledged. We also gratefully acknowledge material received from the Botanical Gardens Bonn and Berlin-Dahlem (Germany), Robert Maijer (Joure, The Netherlands) and Guillermo Pino (Lima, Peru). Thanks are also due to Pieter Asselman (technical assistant) for assisting with data assembling and Guido Mathieu (Ghent, Belgium) for remarks on the manuscript. Many thanks to Daniel Nickrent (Southern Illinois University) for remarks on 26S. Thanks are also due to Isabelle De Graeve and Ľuboš Majeský for help with the practical work on Peperomia fruits. Thanks to Marcel Verhaegen (BR) for the SEM images and Jan Rammeloo, Director of the National Botanic Garden of Belgium. Finally, we thank James A. Doyle and an anonymous reviewer for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Stéphanie Samain.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00606-009-0186-4

Appendices

Appendix 1: Morphological characters

All characters are unordered.

  1. 1.

    Life form: (0) perennial; (1) annual.

  2. 2.

    Growth form: (0) terrestrial; (1) epiphytic.

  3. 3.

    Tuber: (0) absent; (1) present.

  4. 4.

    Stem orientation: (0) subterraneous; (1) erect; (2) prostrate; (3) decumbent; (4) pendent.

  5. 5.

    Stem width: (0) tuberous; (1) succulent and thick; (2) succulent and thin; (3) slender; (4) filiform.

  6. 6.

    Stem cross-section: (0) terete; (1) tuberous; (2) angular; (3) ribbed; (4) irregular.

  7. 7.

    Stem vestiture: (0) glabrous; (1) pubescent; (2) pilose.

  8. 8.

    Stem internodes: (0) absent; (1) elongated; (2) shortened.

  9. 9.

    Architecture: (0) no change before flowering; (1) change before flowering.

  10. 10.

    Leaf arrangement: (0) spiral; (1) whorled; (2) basal rosette.

  11. 11.

    Petiole position: (0) at lamina base; (1) peltate + petiole central; (2) peltate + petiole near base.

  12. 12.

    Leaf shape: (0) window-leaf; (1) peltate; (2) peltate window-leaf; (3) ovate; (4) obovate; (5) oblong; (6) orbicular; (7) cordate; (8) lanceolate; (9) rhomboid

  13. 13.

    Leaf texture: (0) membranous; (1) succulent; (2) coriaceous.

  14. 14.

    Leaf venation pattern: (0) palmate; (1) pinnate; (2) obscure. It is difficult to distinguish the leaf venation in very succulent leaves because of the multiple/multiseriate hypodermis.

  15. 15.

    Leaf vestiture adaxial side: (0) absent; (1) present.

  16. 16.

    Leaf vestiture abaxial side: (0) absent; (1) present.

  17. 17.

    Leaf aroma: (0) absent; (1) present.

  18. 18.

    Petiole vestiture: (0) glabrous; (1) pubescent; (2) tomentose.

  19. 19.

    Inflorescence type: (0) spadix; (1) panicle

  20. 20.

    Inflorescence is shed: (0) no; (1) yes. This character is especially interesting in the species with changing architecture before flowering (see character 9). In these species (e.g. Panicularia, the inflorescence together with a major part of the elongated stem is dropped.

  21. 21.

    Inflorescence position: (0) terminal; (1) (pseudo)lateral; (2) terminal and (pseudo)lateral.

  22. 22.

    Inflorescence ramification: (0) always solitary spadix; (1) 1–2 spadices; (2) 2–3 spadices; (3) 3–6 spadices; (4) numerous spadices. States 1, 2 and 3: number of spadices is varying within the same plant.

  23. 23.

    Peduncle vestiture: (0) glabrous; (1) pubescent; (2) pilose.

  24. 24.

    Peduncle bracts: (0) absent; (1) one; (2) two; (3) three. In most Peperomia species a nonpeltate green to brown bract is present on the peduncle of the inflorescence. However, in some species, this bract seems to be absent. In few species, there are two to three nonpeltate bracts at the base of the spadix.

  25. 25.

    Rachis vestiture: (0) absent; (1) present.

  26. 26.

    Distance between flowers: (0) crowded; (1) loose.

  27. 27.

    Floral bract shape: (0) orbicular; (1) lanceolate; (2) rhomboid; (3) obovate.

  28. 28.

    Style: (0) absent; (1) present. The style is absent in some Peperomia species with an apical stigma (see character 33). In all Peperomia species with a subapical stigma we have investigated so far, the style is absent as well.

  29. 29.

    Stigma position: (0) apical; (1) subapical.

  30. 30.

    Fruit shape: (0) globose; (1) ovoid; (2) obovoid; (3) cylindric; (4) oblong.

  31. 31.

    Fruit attachment: (0) sessile; (1) pedicellate; (2) pseudopedicellate. The flowers and the drupes are sessile in most species, pedicellate in some. In other species, the flowers are sessile, but a pseudopedicel develops as an outgrowth of the rachis when the fruit reaches maturity (Sastrapradja 1968).

  32. 32.

    Fruit surface: (0) smooth; (1) rugose; (2) papillose (whole surface); (3) papillose (mainly at fruit base); (4) papillose (mainly at fruit base and apex); (5) rugose with lacunae; (6) verrucose.

  33. 33.

    Pseudocupula: (0) absent; (1) present. A very clear morphological synapomorphy for the subgenus Micropiper sensu Dahlstedt is the so-called pseudocupula at the basis of the drupe (Dahlstedt 1900).

  34. 34.

    Fruit apex: (0) pointed; (1) oblique; (2) rostrated—rostrum shorter than body—not curved; (3) rostrated—rostrum shorter than body—slightly curved; (4) rostrated—rostrum shorter than body—hooked; (5) rostrated—as long as body—hooked.

Appendix 2: Morphological dataset

-: character state unknown

*: character polymorphic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samain, MS., Vanderschaeve, L., Chaerle, P. et al. Is morphology telling the truth about the evolution of the species rich genus Peperomia (Piperaceae)?. Plant Syst Evol 278, 1–21 (2009). https://doi.org/10.1007/s00606-008-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0113-0

Keywords

Navigation