Skip to main content
Log in

Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subgenus Neoporteria by analyzing 38 morphological characters and DNA sequences from two chloroplast regions of 21 taxa from the Chilean subsections of Eriosyce using a Bayesian and maximum likelihood phylogenetic framework. Also, we attempted to find out if the divergence between the sister taxa in the Neoporteria group had been caused by allopatric or sympatric mechanisms. The morphology-based analysis placed E. chilensis basal within the Neoporteria clade and suggested a further broadening of the group by including E. taltalensis var. taltalensis, formerly considered a member of subsection Horridocactus. However, the combined DNA data placed E. sociabilis and E. taltalensis var. taltalensis within the Horridocactus clade, and placed E. chilensis with E. subgibbosa var. litoralis. The broad concept of E. subgibbosa sensu Kattermann (comprising seven infraspecific taxa), was rejected by our combined molecular results. Finally, our results corroborated changes in subsection Neoporteria proposed by various authors and suggested further modifications within Neoporteria. The analyses of the degree of geographic overlap of the predicted distributions indicated null overlap between the sister taxa, and one probable hybrid origin of E. chilensis, indicating that evolutionary divergence is mainly caused by an allopatric process associated with climatic tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  • Barraclough TG, Vogler AP (2000) Detecting the geographical pattern of speciation from species-level phylogenies. Am Nat 155:419–433

    Article  PubMed  Google Scholar 

  • Cereceda P, Osses P, Larraín H, Farías M, Lagos M, Pinto R, Schemenauer RS (2002) Advective orographic and radiation fog in the Tarapacá region Chile. Atmos Res 64:261–271

    Article  Google Scholar 

  • Cereceda P, Larraín H, Osses P, Farías M, Egaña I (2008) The spatial and temporal variability of fog and its relation to fog oasis in the Atacama Desert Chile. Atmos Res 87:312–323

    Article  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dillon MO, Muñoz-Schick M (1993) A revision of the dioecious genus Griselinia (Griseliniaceae) including a new species from the coastal Atacama Desert of northern Chile. Brittonia 45:261–274

    Article  Google Scholar 

  • Doyle JJ, Doyle JA (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Evans MEK, Smith SA, Flynn RS, Donoghue MJ (2009) Climate niche evolution and diversification of the “bird-cage” evening primroses (Oenothera sections Anogra and Kleinia). Amer Naturalist 173:225–240

    Article  Google Scholar 

  • Ferryman R (2003) Notulae Systematicae Lexicon Cactacearum Spectantes IV. In: Hunt D, Taylor N (eds.) Cactaceae Systematic Initiatives 16:11

  • Fitzpatrick BM, Turelli M (2006) The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 60:601–615

    PubMed  CAS  Google Scholar 

  • Futuyma DJ (2005) Evolutionary biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Graham CH, Ron RR, Santos JC, Schneider CJ, Moritz C (2004) Intergrating phylogenetics and environmental niche models to explore speciation mechanisms in Dendrobatid frogs. Evolution 58:1781–1793

    PubMed  Google Scholar 

  • Guerrero PC, Durán AP, Walter HE (2011) Latitudinal and altitudinal patterns of the endemic cacti from the Atacama Desert to Mediterranean Chile. J Arid Environ. doi:10.1016/j.jaridenv.2011.04.036

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoffmann AE (1989) Cactáceas en la flora silvestre de Chile. Fundación Claudio Gay, Santiago de Chile

    Google Scholar 

  • Hoffmann AE, Walter HE (2004) Cactáceas en la flora silvestre de Chile. Fundación Claudio Gay, Santiago de Chile

    Google Scholar 

  • Houston J (2006) Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int J Climatol 26:2181–2198

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:745–755

    Article  Google Scholar 

  • Hunt DR, Taylor N, Charles G (2006) The New Cactus Lexicon. DH books, Milborne Port

    Google Scholar 

  • Hunt DR (2003) In: Hunt and Taylor (eds) Notulae Systematicae Lexicon Cactacearum Spectantes IV. Cactaceae Systematic Initiatives 16:9

  • Katinas L, Crisci JV (2000) Cladistic and biogeographic analyses of the genera Moscharia and Polyachyrus (Asteraceae Mutisieae). Syst Bot 25:33–46

    Article  Google Scholar 

  • Katinas L, Crisci JV (2008) Reconstructing the biogeographical history of two plant genera with different dispersion capabilities. J Biogeogr 35:1374–1384

    Article  Google Scholar 

  • Kattermann F (1994) Eriosyce (Cactaceae) the genus revised and amplified. Succul Plant Res 1:1–176

    Google Scholar 

  • Kattermann F (2001) Nomenclatural adjustments in Eriosyce Phil. Cactaceae Syst Ini 12:14

    Google Scholar 

  • Kozak KH, Wiens JJ (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621

    PubMed  Google Scholar 

  • Latorre C, Betancourt JL, Quade J (2002) Vegetation invasions into absolute desert: A 45000 yr rodent midden record from the Calama-Salar de Atacama basins northern Chile (lat 22°–24°S). Geol Soc Am Bull 114:349–366

    Article  Google Scholar 

  • Losos JB, Glor RE (2003) Phylogenetic comparative methods and the geography of spciation. Trends Ecol Evol 18:220–227

    Article  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile

    Google Scholar 

  • Luebert F, Wen J (2008) Phylogenetic analysis and evolutionary diversification of Heliotropium Sect Cochranea (Heliotropiaceae) in the Atacama Desert. Syst Bot 33:390–402

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73 http://mesquiteproject.org

  • Mayr E (1959) Isolation as an evolutionary factor. Proc Natl Acad Sci USA 103:221–230

    Google Scholar 

  • Maldonado A, Betancourt JL, Latorre C, Villagrán C (2005) Pollen analyses from a 50000-yr rodent midden series in the southern Atacama Desert (25° 30′S). J Quat Sci 20:493–507

    Article  Google Scholar 

  • Nixon KC, Davis JI (1991) Polymorphic taxa missing value and cladistic analysis. Cladistics 7:233–241

    Article  Google Scholar 

  • Nyffeler R, Eggli U (1997) Comparative stem anatomy and systematics of Eriosyce sensu lato (Cactaceae). Ann Bot 80:767–786

    Article  Google Scholar 

  • Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326

    Article  PubMed  CAS  Google Scholar 

  • Nyffeler R, Eggli U (2010) A farewell to dated ideas and concepts—molecular phylogenetics and a revised suprageneric classification of the family Cactaceae. Schumannia 6:109–149

    Google Scholar 

  • Nylander JA, Ronquist AF, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling In: Proceedings of the twenty-first international conference on machine learning. ACM Press, New York

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Posadas P, Crisci JV, Katinas L (2006) Historical biogeography: a review of its basic concepts and critical issues. J Arid Environ 66:389–403

    Article  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day Geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    Article  PubMed  Google Scholar 

  • Ritter F (1963) Succulenta (NL) 1:3

  • Ritter F (1980) Kakteen in Südamerika vol 3. Selbstverlag, Spangenberg

  • Ritz CM, Martins L, Mecklenburg R, Goremykin V, Hellwig FH (2007) The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Am J Bot 94:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441:210–213

    Article  PubMed  CAS  Google Scholar 

  • Schlumpberger BO, Raguso RA (2008) Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117:801–814

    Article  Google Scholar 

  • Schemske DW, Bradshaw HD (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96:11910–11915

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi H, Osawa TA, Pintaud JC, Jaffré T, Veillon JM (1998) Phylogenetic relationships within Araucariaceae based on rbcL genes sequences. Am J Bot 85:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771

    Article  Google Scholar 

  • Styles EG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Missouri Bot Gard 68:323–351

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–3438

    Article  PubMed  Google Scholar 

  • Walter HE, Mächler W (2006) Rearrangements in the systematics of Eriosyce napina (Philippi) Kattermann (Cactaceae). Cactus World 24(3):135–143

    Google Scholar 

  • Walter HE (2008) Floral biology phytogeography and systematics of Eriosyce subgenus Neoporteria (Cactaceae). Bradleya 26:75–98

    Google Scholar 

  • Wiens JJ (2004a) What is speciation and how should we study it? Am Nat 163:914–923

    Article  PubMed  Google Scholar 

  • Wiens JJ (2004b) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution ecology and conservation biology. Annu Rev Ecol Syst 36:519–539

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Diversity Distrib 14:763–773

    Article  Google Scholar 

  • Zizka G, Schmidt M, Schulte K, Novoa P, Pinto R, König K (2009) Chilean Bromeliaceae: diversity, distribution and evaluation of conservatio status. Biodiversity Conserv 18:2449–2471

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Belgrano MJ (2008) Catálogo de plantas vasculares del cono sur (Argentina, sur de Brasil, Chile, Paraguay y Uruguay). Instituto de Botánica Darwinion. Available via http://wwwdarwineduar/Proyectos/FloraArgentina/FAasp. Accessed 28 May 2009

Download references

Acknowledgments

We are grateful to A. Marticorena (CONC), M. Muñoz-Schick (SGO), and I. Meza (SGO) for access to their collection of specimens. We appreciate R. Scherson’s advice on DNA extraction and amplification. We are indebted with P. Posadas, J.V. Crisci, U. Eggli and R. Nyffeler, for their valuable comments and collaboration on different stages of this study. We are also grateful to CONAF for access to the National System of Protected Areas. Computational resources were provided by the Bioportal at the University of Oslo, Norway (http://www.bioportal.uio.no). This research was partially supported by the Instituto de Ecología y Biodiversidad, project ICM-P05-002. PCG acknowledges CONICYT doctoral fellowship and thesis support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo C. Guerrero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, P.C., Arroyo, M.T.K., Bustamante, R.O. et al. Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae). Plant Syst Evol 297, 113 (2011). https://doi.org/10.1007/s00606-011-0512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-011-0512-5

Keywords

Navigation