Skip to main content

Advertisement

Log in

Regional climate simulations for the European Alpine Region—sensitivity of precipitation to large-scale flow conditions of driving input data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The MM5 modelling system has been used to perform regional climate simulations over Western Europe on a 45-km grid for the years 1971 to 2000. We focus our analysis on the impact of the driving input data on simulated precipitation in the Alpine area. Using ERA40 reanalysis data, the MM5 climatology of precipitation compares reasonably well with an observational climatology for the Alpine region. Switching to an ECHAM5 climate simulation as driving data induces excessive overprediction by up to 80% in the colder seasons there, primarily over the Alpine slopes. The large-scale flow provided by the global datasets revealed moderate differences indicating an increased number of low-pressure systems travelling from the Atlantic into the Alpine region for ECHAM5 compared with ERA40. Mean seasonal 700-hPa wind speeds correspondingly showed higher values for the ECHAM5 driven simulation in the central Alps. Partitioning three-hourly 700-hPa winds according to direction and speed in the central Alps specifically revealed a distinct shift to stronger westerly and north-westerly winds. Furthermore, aggregating three-hourly rainfall amounts to the same wind direction and wind speed intervals as for the wind statistics revealed strongly intensified precipitation due to the overly intense westerly winds, implying too intense orographic precipitation enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Climate 19:3518–3543

    Article  ADS  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587

    Google Scholar 

  • Buonomo E, Jones RG, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J Roy Meteorol Soc 133:65–81

    Article  ADS  Google Scholar 

  • Chen F, Dudhia J (2001a) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  ADS  Google Scholar 

  • Chen F, Dudhia J (2001b) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: preliminary model validation. Mon Weather Rev 129:587–604

    Article  ADS  Google Scholar 

  • Christensen OB, Christensen JH, Machenauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia - present climate. J Climate 11:3204–3229

    Article  ADS  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513

    Article  ADS  Google Scholar 

  • Duffy PB, Arritt RW, Coquard J, Gutowski W, Han J, Iorio J, Kim J, Leung LR, Roads J, Zeledon E (2006) Simulations of present and future climates in the Western United States with four nested regional climate models. J Climate 19:873–895

    Article  ADS  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900

    Article  Google Scholar 

  • Früh B, Schipper JW, Pfeiffer A, Wirth V (2006) A pragmatic approach for downscaling precipitation in alpine-scale complex terrain. Meteorol Z 15:631–646

    Article  Google Scholar 

  • Giorgi FG, Mearns LO, Shields C, McDaniel L (1998) Regional nested model simulations of present day and 2xC02 climate over the Central Plains of the U.S. Clim Change 40:457–493

    Article  CAS  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), NCAR Technical Report Note TN-398. National Center for Atmospheric Research, Boulder. p. 138

    Google Scholar 

  • Gutowski WJ Jr, Takle ES, Kozak KA, Patton JC, Arritt RW, Christensen JH (2007) A possible constraint on regional precipitation intensity changes under global warming. J Hydrometeor 8:1382–1396

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129

    Article  ADS  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulent closure schemes. Mon Weather Rev 122:927–945

    Article  ADS  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  ADS  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteor Society, Boston. p. 246

    Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. BAMS 77:437–741

    Article  ADS  Google Scholar 

  • Kunkel KE, Andsager K, Liang X-Z, Arritt RW, Takle ES, Gutowski WJ, Pan Z (2002) Observations and regional climate model simulations of heavy precipitation events and seasonal anomalies: a comparison. J Hydrometeorol 3:322–334

    Article  ADS  Google Scholar 

  • Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments - the integrative perspective of GLOWA-Danube. Phys Chem Earth, B (Hydrology, Oceans and Atmosphere) 28(14):621–634

    Google Scholar 

  • Pan Z, Christensen J, Arritt R, Gutowski W, Takle E, Otieno F (2001) Evaluation of uncertainties in regional climate change simulations. J Geophys Res 106:17735–17751

    Article  ADS  Google Scholar 

  • Pfeiffer A, Zängl G (2010) Validation of climate-mode MM5-simulations for the European Alpine region. Theor Appl Climatol 101:93–108

    Article  ADS  Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart J Roy Metero Soc 124B:1071–1107

    Article  ADS  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349. p. 127 [Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany]

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791

    Article  ADS  Google Scholar 

  • Schipper JW, Früh B, Pfeiffer A, Zängl G (2009) Wind direction-dependent statistical downscaling of precipitation applied to the upper Danube catchment. Int J Climatol 24: 1443–1460.

    Google Scholar 

  • Suklitsch M, Gobiet A, Truhetz H, Awan NK, Göttel H, Jacob D (2010) Error characteristics of high resolution regional climate models over the Alpine area. Clim Dyn. doi:10.1007/s00382-010-0848-5

  • Themeßl JM, Gobiet A, Leuprecht A (2010) Empirical-statistical downscling and error correction of daily precipitation from regional climate models. Int J Climatol. doi:10.1002/joc.2168

  • Uppala SM and coauthors (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012,

    Article  ADS  Google Scholar 

  • Wastl C, Zängl G (2007) Analysis of the climatological precipitation gradient between the Alpine foreland and the northern Alps. Met Z 16:541–552

    Article  ADS  Google Scholar 

  • Wastl C, Zängl G (2008) Analysis of mountain-valley precipitation differences in the Alps. Met Z 17:311–321

    Article  ADS  Google Scholar 

  • Zängl G (2002) An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon Weather Rev 130:1423–1432

    Article  ADS  Google Scholar 

  • Zolina O, Kapala A, Simmer C, Gulev SK (2004) Analysis of extreme precipitation over Europe from different reanalyses: a comparative assessment. Global Planet Change 44:129–16

    Article  Google Scholar 

Download references

Acknowledgements

The presented study was funded by the German Ministry of Research and Education (BMBF) in the framework of the project GLOWA. The authors are also grateful to the ECMWF and the MPI/Hamburg for providing the ERA40 data and the ECHAM5 simulation results for the years of 1971 to 2000, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, A., Zängl, G. Regional climate simulations for the European Alpine Region—sensitivity of precipitation to large-scale flow conditions of driving input data. Theor Appl Climatol 105, 325–340 (2011). https://doi.org/10.1007/s00704-010-0394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0394-4

Keywords

Navigation