Skip to main content
Log in

Multifractal analysis of 1-min summer rainfall time series from a monsoonal watershed in eastern China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Multifractal analysis can provide parameters associated with different scales of rainfall, which may be useful for setting up parsimonious downscaling models of rainfall, or for revealing climate-specific properties. Time series of rain rate with 1-min resolution collected from ten stations over a monsoon watershed in eastern China were used to study the multifractal properties. The power spectra estimated by fast Fourier transform (FFT) and discrete Haar wavelet transform (DWT) showed three scaling regimes: the sub-hourly scaling regime with β ≈ 1.2, the scaling regime from 1 h to 1 day with β close to 0.6, and the low-frequency spectra plateau with β ≈ 0.1. From the hyperbolic tails of exceeding probability distributions, the estimated values of parameter q c are in 2–2.5, which were consistent with the critical order of K(q) curves. The statistical moments display two main scaling regimes: the high-frequency regime from 3 min to 5 days and the scaling regime beyond 5 days. The scales of 5–10 days seem a transitional regime. The reason that the regimes, revealed by the power spectra, disagree with the statistical moments may be that both FFT and DWT power spectra have limited abilities of analyzing low-frequency scaling but are sensitive to the properties in high-frequency scales. The H values estimated for the regime of sub-hourly scales are larger than 0.4, and the values for the regime 1 h–1 day are close to 0.1. For the low-frequency scales beyond 1 day, negative H is obtained by DWT power spectra. The parameters of universal multifractal models were also estimated. The values of α for the scaling range of 1 min–5 days are 0.486 ± 0.047, and for the low-frequency scaling range, its values are 0.808 ± 0.323. For the high- and low-frequency scaling ranges, the values of C 1 are 0.5 and 0.169, respectively, which is different from the values for daily rainfall series collected at the same rain gages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • de Lima M, Grasman J (1999) Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J Hydrol 220(1–2):1–11

    Article  Google Scholar 

  • de Montera L, Verrier S, Mallet C, Barthès L (2010) A passive scalar-like model for rain applicable up to storm scale. Atmos Res 98(1):140–147

    Article  Google Scholar 

  • Deidda R (1999) Multifractal analysis and simulation of rainfall fields in space. Phys Chem Earth Pt B 24(1–2):73–78

    Article  Google Scholar 

  • Garcia-Marin AP, Jimenez-Hornero FJ, Ayuso-Munoz JL (2008a) Universal multifractal description of an hourly rainfall time series from a location in southern Spain. Atmosfera 21(4):347–355

    Google Scholar 

  • Garcia-Marin AP, Jimenez-Hornero FJ, Ayuso-Munoz JL (2008b) Multifractal analysis as a tool for validating a rainfall model. Hydrol Process 22(14):2672–2688

    Article  Google Scholar 

  • Gupta VK, Waymire EC (1993) A statistical analysis of mesoscale rainfall as a random cascade. J Appl Meteorol 32(2):251–267

    Article  Google Scholar 

  • Harris D, Menabde M, Seed A, Austin G (1996) Multifractal characterization of rain fields with a strong orographic influence. J Geophys Res-Atmos 101(D21):26405–26414

    Article  Google Scholar 

  • Hsu HM, Moncrieff MW, Tung WW, Liu CH (2006) Multiscale temporal variability of warm-season precipitation over North America: statistical analysis of radar measurements. J Atmos Sci 63(9):2355–2368

    Article  Google Scholar 

  • Hsu H, Lin C, Tribbia J, Liu S (2011) Air-chemistry “turbulence”: power-law scaling and statistical regularity. Atmos Chem Phys 11(16):8395–8413

    Article  Google Scholar 

  • Kiely G, Ivanova K (1999) Multifractal analysis of hourly precipitation. Phys Chem Earth Pt B 24(7):781–786

    Article  Google Scholar 

  • Ladoy P, Schmitt F, Schertzer D, Lovejoy S (1993) The multifractal temporal variability of Nimes rainfall data. Cr Acad Sci II 317(6):775–782

    Google Scholar 

  • Lavallee D (1991) Multifractal analysis and simulation technique and turbulent fields. McGill University, Montreal

    Google Scholar 

  • Liu Y, Wanchang Z, Kexin Z, Hongqin P (2011) Multifractal analysis of daily rainfall from a monsoon watershed in Eastern China. Theor Appl Climatol. doi:10.1007/s00704-011-0505-x

  • Lovejoy S, Mandelbrot BB (1985) Fractal properties of rain, and a fractal model. TELLUS A 37(3):209–232

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1985) Generalized scale-invariance in the atmosphere and fractal models of rain. Water Resour Res 21(8):1233–1250

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1990) Fractals, raindrops and resolution dependence of rain measurements. J Appl Meteorol 29(11):1167–1170

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2006) Multifractals, cloud radiances and rain. J Hydrol 322(1–4):59–88

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2008) Turbulence, raindrops and the l 1/2 number density law. New J Phys 10(7):075017–075017

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2010) Towards a new synthesis for atmospheric dynamics: space–time cascades. Atmos Res 96(1):1–52

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2011) Space time cascades and the scaling of ECMWF reanalyses: fluxes and fields. J Geophys Res 116:D14117. doi:10.1029/2011JD015654

    Article  Google Scholar 

  • Lovejoy S, Schertzer D, Allaire VC (2008a) The remarkable wide range spatial scaling of TRMM precipitation. Atmos Res 90(1):10–32

    Article  Google Scholar 

  • Lovejoy S, Schertzer D, Lilley M, Strawbridge KB, Radkevich A (2008b) Scaling turbulent atmospheric stratification. I: turbulence and waves. Q J Roy Meteor Soc 134(631):277–300

    Article  Google Scholar 

  • Lovejoy S, Tarquis AM, Gaonac HH, Schertzer D (2008c) Single- and multiscale remote sensing techniques, multifractals, and MODIS-derived vegetation and soil moisture. Vadose Zone J 7(2):533–546

    Article  Google Scholar 

  • Mandelbrot BB (1976) Definition and stationarity of fractional Gaussian noise. J Hydrol 30(4):407–409

    Article  Google Scholar 

  • Marani M (2005) Non-power-law-scale properties of rainfall in space and time. Water Resour Res 41(8). doi:10.1029/2004WR003822

  • Marani M, Zanetti S (2007) Downscaling rainfall temporal variability. Water Resour Res 43(9). doi:10.1029/2006WR005505

  • Mazzarella A (1999) Multifractal dynamic rainfall processes in Italy. Theor Appl Climatol 63(1–2):73–78

    Article  Google Scholar 

  • Menabde M, Sivapalan M (2000) Modeling of rainfall time series and extremes using bounded random cascades and Levy-stable distributions. Water Resour Res 36(11):3293–3300

    Article  Google Scholar 

  • Menabde M, Harris D, Seed A, Austin G, Stow D (1997a) Multiscaling properties of rainfall and bounded random cascades. Water Resour Res 33(12):2823–2830

    Article  Google Scholar 

  • Menabde M, Seed A, Harris D, Austin G (1997b) Self-similar random fields and rainfall simulation. J Geophys Res-Atmos 102(D12):13509–13515

    Article  Google Scholar 

  • Nykanen DK, Harris D (2003) Orographic influences on the multiscale statistical properties of precipitation. J Geophys Res-Atmos 108(D8). doi:10.1029/2001JD001518

  • Olsson J (1996) Validity and applicability of a scale-independent, multifractal relationship for rainfall. Atmos Res 42(1–4):53–65

    Article  Google Scholar 

  • Olsson J, Niemczynowicz J (1996) Multifractal analysis of daily spatial rainfall distributions. J Hydrol 187(1–2):29–43

    Article  Google Scholar 

  • Over TM, Gupta VK (1994) Statistical analysis of mesoscale rainfall: dependence of a random cascade generator on large-scale forcing. J Appl Meteorol 33(12):1526–1542

    Article  Google Scholar 

  • Paulson KS, Baxter PD (2007) Downscaling of rain gauge time series by multiplicative beta cascade. J Geophys Res 112(D9). doi:10.1029/2006JD007333

  • Ratti SP, Salvadori G, Gianini G, Lovejoy S, Schertzer D (1994) Universal multifractal approach to intermittency in high-energy physics. Z Phys C Part Fields 61(2):229–237

    Article  Google Scholar 

  • Royer JF, Biaou A, Chauvin F, Schertzer D, Lovejoy S (2008) Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. Cr Geosci 340:431–440

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92:9693–9714

    Article  Google Scholar 

  • Stolle J, Lovejoy S, Schertzer D (2009) The stochastic multiplicative cascade structure of deterministic numerical models of the atmosphere. Nonlin Proc Geoph 16(5):607–621

    Article  Google Scholar 

  • Svensson C, Olsson J, Berndtsson R (1996) Multifractal properties of daily rainfall in two different climates. Water Resour Res 32(8):2463–2472

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals—theory and observations for rain and clouds. J Appl Meteorol 32(2):223–250

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophy Res-Atmos 101(D21):26427–26440

    Article  Google Scholar 

  • Verrier S, de Montera L, Barthès L, Mallet C (2010) Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem. J Hydrol 389(1–2):111–120

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by three Projects of National Natural Science foundation of China (grant number: 40975048, 40971024, and 41105074), the Innovation Key Program of the Chinese Academy of Sciences (grant no. KZCX2-EW-202), the Open Research Fund for Huai River Basin Meteorological Research (grant number HRM200904), the Open Research Fund of Key Laboratory of Digital Earth Science, Center for Earth Observation and Digital Earth, Chinese Academy of Sciences (grant number 2011LDE010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yonghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonghe, L., Kexin, Z., Wanchang, Z. et al. Multifractal analysis of 1-min summer rainfall time series from a monsoonal watershed in eastern China. Theor Appl Climatol 111, 37–50 (2013). https://doi.org/10.1007/s00704-012-0627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0627-9

Keywords

Navigation