Skip to main content
Log in

Different multi-fractal behaviors of diurnal temperature range over the north and the south of China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Multi-fractal behaviors of diurnal temperature range (DTR for short) from 100 stations over China during 1956–2010 are analyzed by means of multi-fractal detrended fluctuation analysis. By making a Monte-Carlo simulation, we obtain two criterions which can be used to decide whether a DTR series is significantly multi-fractal or not. With these criterions, different multi-fractal behaviors are found over the north and the south of China, and Yangtze River is roughly the dividing line. Over the north region, nearly all the considered DTR series do not show multi-fractal behaviors, while the results are completely the opposite over the south. The findings are confirmed by the scaling behaviors of the corresponding DTR magnitude series and indicate that more scale-dependent structure differences may be hidden in DTR series over the north and the south of China. Therefore, an extensive analysis of the multi-fractal behaviors are essential for a better understanding of the complex structures of the climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashkenazy Y, Ivanov PC, Havlin S, Peng C-K, Goldberger AL, Stanley HE (2001) Magnitude and sign correlations in heartbeat fluctuations. Phys Rev Lett 86:1900

    Article  Google Scholar 

  • Ashkenazy Y, Havlin S, Ivanov PC, Peng C-K, Schulte-Frohlinde V, Stanley HE (2003) Magnitude and sign scaling in power-law correlated time series. Physica, A 323:19

    Article  Google Scholar 

  • Barabasi AL, Vicsek T (1991) Multifractality of self-affine fractals. Phys Rev A 44:2730

    Article  Google Scholar 

  • Blender R, Fraedrich K (2003) Long time memory in global warming simulations. Geophys Res Lett 30:1769

    Article  Google Scholar 

  • Bogachev MI, Eichner JF, Bunde A (2007) Effect of nonlinear correlations on the statistics of return intervals in multifractal data sets. Phys Rev Lett 99:240601

    Article  Google Scholar 

  • Bunde A, Havlin S, Koscielny-Bunde E, Schellnbuber H-J (2001) Long term persistence in the atmosphere: global laws and tests of climate models. Physica, A 302:255

    Article  Google Scholar 

  • Chen X, Lin G, Fu Z (2007) Long-range correlations in daily relative humidity fluctuations: a new index to characterize the climate regions over China. Geophys Res Lett 34:L07804

    Article  Google Scholar 

  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364

    Article  Google Scholar 

  • Eichner JF, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber H-J (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Phys Rev E 68:046133

    Article  Google Scholar 

  • Feng T, Fu Z, Deng X, Mao J (2009) A brief description to different multi-fractal behaviors of daily wind speed records over China. Phys Lett A 373:4134

    Article  Google Scholar 

  • Forster PM, Solomon S (2003) Observations of a “weekend effect” in diurnal temperature range. Proc Natl Acad Sci 100:11225

    Article  Google Scholar 

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108501

    Article  Google Scholar 

  • Gong D, Guo D, Ho CH (2006) Weekend effect in diurnal temperature range in China: opposite signals between winter and summer. J Geophys Res 111:D18113

    Article  Google Scholar 

  • Govindan RB, Vyushin D, Bunde A, Brenner S, Havlin S, Schellnhuber H-J (2002) Global climate models violate scaling of the observed atmospheric variability. Phys Rev Lett 89:028501

    Article  Google Scholar 

  • Govindan RB, Wilson JD, Preiβl H, Eswaran H, Campbell JQ, Lowery CL (2007) Detrended fluctuation analysis of short datasets: an application to fetal cardiac data. Physica, D 226:23

    Article  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770

    Google Scholar 

  • Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461

    Article  Google Scholar 

  • Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR (2001) From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11:641

    Article  Google Scholar 

  • Kalisky T, Ashkenazy Y, Havlin S (2005) Volatility of linear and nonlinear time series. Phys Rev E 72:011913

    Article  Google Scholar 

  • Kantelhardt JW (2008) Fractal and multifractal time series. In: Springer encyclopaedia of complexity and system science. arXiv: 0804.0747vl [physics.data-an]

  • Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica, A 295:441

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res 111:D01106

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica, A 316:87

    Article  Google Scholar 

  • Király A, Bartos I, Jánosi IM (2006) Correlation properties of daily temperature anomalies over land. Tellus 58A:593

    Article  Google Scholar 

  • Király A, Jánosi IM (2005) Detrended fluctuation analysis of daily temperature records: geographic dependence over Australia. Meteorol Atmos Phys 88:119

    Article  Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber H-J (1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81:729

    Article  Google Scholar 

  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120

    Article  Google Scholar 

  • Lennartz S, Bunde A (2009) Trend evaluation in records with long-term memory: application to global warming. Geophys Res Lett 36:L16706

    Article  Google Scholar 

  • Lennartz S, Bunde A (2011) Distribution of natural trends in long-term correlated records: a scaling approach. Phys Rev E 84:021129

    Article  Google Scholar 

  • Li Q, Zhang H, Chen J, Li W, Liu X, Jones P (2009) A mainland China homogenized historical temperature dataset for 1951–2004. Bull. Amer. Meteor. Soc 90:1062

    Article  Google Scholar 

  • Lin G, Fu Z (2008) A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Physica, A 387(2008):573

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M, Qi Y, Li Y (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Climate 17:4453

    Article  Google Scholar 

  • Lu F, Yuan N, Fu Z, Mao J (2012) Universal scaling behaviors of meteorological variables’ volatility and relations with original records. Physica, A. doi:10.1016/j.physa.2012.05.031

    Google Scholar 

  • Malamud BD, Turcotte DL (1999) Long term persistence in geosciences. Adv Geophys 40:1

    Article  Google Scholar 

  • Monetti RA, Havlin S, Bunde A (2003) Long term persistence in the sea surface temperature fluctuations. Physica, A 320:581

    Article  Google Scholar 

  • Muzy JF, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 47:875

    Article  Google Scholar 

  • Oświecimka P, Kwapień J, Drożdż S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rev E 74:016103

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685

    Article  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82

    Article  Google Scholar 

  • Rybski D, Bunde A, Havlin S, von Storch H (2006) Long-term persistence in climate and the detection problem. Geophys Res Lett 33:L06718

    Article  Google Scholar 

  • Rybski D, Bunde A, von Storch H (2008) Long-term memory in 1000-year simulated temperature records. J Geophys Res 113:D02106

    Article  Google Scholar 

  • Schmitt F, Lovejoy S, Schertzer D (1995) Multifractal analysis of the Greenland ice-core project climate data. Geophys Res Lett 22:1689

    Article  Google Scholar 

  • Talkner P, Weber RO (2000) Power spectrum and detrended fluctuation analysis: application to daily temperature. Phys Rev E 62:150

    Article  Google Scholar 

  • Telesca L, Lapenna V, Macchiato M (2005) Multifractal fluctuations in seismic interspike series. Physica, A 354:629

    Article  Google Scholar 

  • Vyushin D, Zhidkov I, Havlin S, Bunde A, Brenner S (2004) Volcanic forcing improves atmosphere-ocean coupled general circulation model scaling performance. Geophys Res Lett 31:L10206

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35:L14702

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific−East Asian teleconnection: How does ENSO affect East Asian climate?. J Climate 13:1517

    Article  Google Scholar 

  • Weber RO, Talkner P (2001) Spectra and correlations of climate data from days to decades. J Geophys Res 106:20131

    Article  Google Scholar 

  • Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8:770

    Article  Google Scholar 

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126:913

    Article  Google Scholar 

  • Yuan N, Fu Z, Mao J (2010) Different scaling behaviors in daily temperature records over China. Physica, A 389:4087

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks are due to supports from the National Natural Science Foundation of China (nos. 41175141 and 41175059) and from the National Basic Research Programme of China (no. 2011CB403505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuntao Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, N., Fu, Z. & Mao, J. Different multi-fractal behaviors of diurnal temperature range over the north and the south of China. Theor Appl Climatol 112, 673–682 (2013). https://doi.org/10.1007/s00704-012-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0762-3

Keywords

Navigation