Skip to main content

Advertisement

Log in

Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Chaudhry GR (1988) Irrigated agriculture of Pakistan. S. Nazir, Lahore

  • Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355(1–4):148–163. doi:10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  • Anandhi A, Srinivas VV, Nanjundiah RS, Nagesh Kumar D (2007) Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol 28:401–420. doi:10.1002/joc.1529

    Article  Google Scholar 

  • Archer DR, Fowler HJ (2008) Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J Hydrol 361(1–2):10–23. doi:10.1016/j.jhydrol.2008.07.017

    Article  Google Scholar 

  • Ashiq M, Zhao C, Ni J, Akhtar M (2010) GIS-based high-resolution spatial interpolation of precipitation in mountain–plain areas of Upper Pakistan for regional climate change impact studies. Theor Appl Climatol 99(3):239–253. doi:10.1007/s00704-009-0140-y

    Article  Google Scholar 

  • Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific, New York

  • Chu J, Xia J, Xu CY, Singh V (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99(1):149–161. doi:10.1007/s00704-009-0129-6

    Article  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Chang 69(2):245–268. doi:10.1007/s10584-005-1157-6

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1–4):145–163. doi:10.1016/j.hydrol.2004.10.012

    Article  Google Scholar 

  • Elshamy ME, Seierstad IA, Sorteberg A (2009) Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol Earth Syst Sci 13:551–565. doi:10.5194/hess-13-551-2009

    Article  Google Scholar 

  • Fealy R, Sweeney J (2007) Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int J Climatol 27(15):2083–2094. doi:10.1002/Joc.1506

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. doi:10.1002/Joc.1556

    Article  Google Scholar 

  • Gagnon S, Singh B, Rousselle J, Roy L (2005) An application of the statistical downscaling model (SDSM) to simulate climatic data for streamflow modelling in Québec. Canad Water Resour J 30(4):297–314. doi:10.4296/cwrj3004297

    Article  Google Scholar 

  • Gebremeskel S, Liu YB, de Smedt F, Hoffmann L, Pfister L (2005) Analysing the effect of climate changes on streamflow using statistically downscaled GCM scenarios. Int J River Basin Manag 2(4):271–280. doi:10.1080/15715124.2004.9635237

    Article  Google Scholar 

  • Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210(1–4):242–258. doi:10.1016/s0022-1694(98)00192-9

    Article  Google Scholar 

  • Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Ad Water Resour 31:132–146

    Article  Google Scholar 

  • Giorgi F, Christensen J, Hulme M, Storch Hv, Whetton P, Jones R, Mearns L, Fu C, Arritt, R, Bates B, Benestad R, Boer G, Buishand A, Castro M, Chen D, Cramer W, Crane R, Crossly J, Dehn M, Dethloff K, Dippner J, Emori, S., Francisco, R., Fyfe, J., Gerstengarbe, F., Gutowski, W., Gyalistras, D., Hanssen-Bauer, I., Hantel, M., Hassell, D., Heimann, D., Jack, C., Jacobeit, J., Kato, H., Katz, R., Kauker, F., Knutson, T., Lal, M., Landsea, C., Laprise, R., Leung, L., Lynch, A., May, W., McGregor, J., Miller, N., Murphy, J., Ribalaygua, J., Rinke, A., Rummukainen, M., Semazzi, F., Walsh, K., Werner, P., Widmann, M., Wilby, R., Wild, M., Xue, Y (2001) Regional Climate Information—Evaluation and Projections, Climate Change 2001: The Scientific Basis. Contribution of Working Group to the Third Assessment Report of the Intergouvernmental Panel on Climate Change

  • Goyal MK, Ojha CSP (2010) Robust weighted regression as a downscaling tool in temperature projections. Int J Global Warming 2(3):234–251. doi:10.1504/IJGW.2010.036135

    Article  Google Scholar 

  • Hashmi M, Shamseldin A, Melville B (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Env Res Risk A 25(4):475–484. doi:10.1007/s00477-010-0416-x

    Article  Google Scholar 

  • Hay LE, Clark MP (2003) Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J Hydrol 282(1–4):56–75. doi:10.1016/s0022-1694(03)00252-x

    Article  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36(2):387–397. doi:10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Climate Res 07:97–110

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu C, Wang B, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Env Res Risk A 25(6):781–792. doi:10.1007/s00477-010-0441-9

    Article  Google Scholar 

  • Huth R (2002) Statistical downscaling of daily temperature in Central Europe. J Clim 15(13):1731–1742. doi:10.1175/1520-0442(2002)015<1731:sdodti>2.0.co;2

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobusse G (2005) WinMICE User’s manual

  • Kannan S, Ghosh S (2011) Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output. Stoch Env Res Risk A 25(4):457–474. doi:10.1007/s00477-010-0415-y

    Article  Google Scholar 

  • Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods. J Hydrol 319(1–4):357–382. doi:10.1016/j.jhydrol.2005.06.035

    Article  Google Scholar 

  • Li X, Sailor D (2000) Application of tree-structured regression for regional precipitation prediction using general circulation model output. Climate Res 16(1):17–30. doi:10.3354/cr016017

    Article  Google Scholar 

  • Liu Z-F, Xu Z-X, Liu L-L, Chen Y-n (2008) Temporal trends of future maximum and minimum air temperature in the Tarim River Basin (in Chinese with English abstract). Arid Land Geogr 31:822–829

    Google Scholar 

  • Liu J, Williams JR, Wang X, Yang H (2009) Using MODAWEC to generate daily weather data for the EPIC model. Environ Model Softw 24(5):655–664. doi:10.1016/j.envsoft.2008.10.008

    Article  Google Scholar 

  • Liu Z, Xu Z, Charles SP, Fu G, Liu L (2011) Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China. Int J Climatol:n/a-n/a. doi:10.1002/joc.2211

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mujumdar PP, Ghosh S (2008) Modeling GCM and scenario uncertainty using a possibilistic approach: application to the Mahanadi River, India. Water Resour Res 44:W06407-1

    Article  Google Scholar 

  • NCDC-NOAA. http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/. 2011

  • Nguyen V (2002) Downscaling methods for evaluating the impacts of climate change and variability on hydrological regime at basin scale. In: International Symposium on Role of Water Sciences in Transboundary River Basin Management, Thailand, 2005. pp 1–8

  • Opitz-Stapleton S, Gangopadhyay S (2010) A non-parametric, statistical downscaling algorithm applied to the Rohini River Basin, Nepal. Theor Appl Climatol 103(3–4):375–386. doi:10.1007/s00704-010-0301-z

    Google Scholar 

  • Pallant J (2007) SPSS Survival Manual: a step by step guide to data analysis using the SPSS for windows

  • PWP (2011) Monsoon of Pakistan. http://pakistanweatherportal.com/monsoon-of-pakistan/

  • Qamer FM, Saleem R, Hussain N, Raza SM (2008) Multi-scale watershed database of Pakistan, 10th International Symposium on High Mountain Remote Sensing Cartography http://pakistanwetlands.org/webpages/gis-multi%20scale%20database.html

  • Salzmann N, Frei C, Vidale P-L, Hoelzle M (2007) The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Global Planet Chang 56(1–2):188–202. doi:10.1016/j.gloplacha.2006.07.006

    Article  Google Scholar 

  • Schoof JT, Pryor SC (2001) Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int J Climatol 21(7):773–790. doi:10.1002/joc.655

    Article  Google Scholar 

  • Sharma D, Das Gupta A, Babel MS (2007) Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrol Earth Syst Sci 4:35–74

    Article  Google Scholar 

  • Souvignet M, Heinrich J (2011) Statistical downscaling in the arid central Andes: uncertainty analysis of multi-model simulated temperature and precipitation. doi:10.1007/s00704-011-0430-z

  • Sunyer MA, Madsen H, Ang PH (2011) A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos Res. doi:10.1016/j.atmosres.2011.06.011

  • Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330(3–4):621–640. doi:10.1016/j.jhydrol.2006.04.030

    Article  Google Scholar 

  • Wang J, Zhang X (2008) Downscaling and projection of winter extreme daily precipitation over North America. J Clim 21(5):923–937. doi:10.1175/2007jcli1671.1

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    Article  Google Scholar 

  • Wetterhall FA, Bárdossy D, Chen SH, Xu C-Y (2006) Daily precipitation-downscaling techniques in three Chinese regions. Water Resour Res 42(aa):W11423. doi:10.1029/2005WR004573

    Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu C-Y (2009) Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol 96(1):95–103. doi:10.1007/s00704-008-0038-0

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geog 21:530–548. doi:10.1177/030913339702100403

    Article  Google Scholar 

  • Wilby RL, Hay LE, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J Hydrol 225(1–2):67–91. doi:10.1016/s0022-1694(99)00136-5

    Article  Google Scholar 

  • Wilby RL, Hay LE, Gutowski WJ, Arritt RW, Takle ES, Pan Z, Leavesley GH, Martyn PC (2000) Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett 27(8):1199. doi:10.1029/1999GL006078

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Software 17(2):145–157. doi:10.1016/s1364-8152(01)00060-3

    Article  Google Scholar 

  • Wilby RL, Whitehead PG, Wade AJ, Butterfield D, Davis RJ, Watts G (2006) Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J Hydrol 330(1–2):204–220. doi:10.1016/j.jhydrol.2006.04.033

    Article  Google Scholar 

  • Xu C-Y (1999) Climate change and hydrologic models: a review of existing gaps and recent research developments. Water Resour Manag 13(5):369–382. doi:10.1023/a:1008190900459

    Article  Google Scholar 

  • Yang W, Bárdossy A, Caspary H-J (2010) Downscaling daily precipitation time series using a combined circulation- and regression-based approach. Theor Appl Climatol 102(3–4):439–454. doi:10.1007/s00704-010-0272-0

    Article  Google Scholar 

  • Yaoming L, Qiang Z, Deliang C (2004) Stochastic modeling of daily precipitation in China. J Geogr Sci 14(4):417–426. doi:10.1007/bf02837485

    Article  Google Scholar 

  • Zhang XC, Liu WZ, Li Z, Chen J (2011) Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios. Agric Forest Meteor 151(10):1297–1304. doi:10.1016/j.agrformet.2011.05.010

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the first author’s doctoral research work conducted at the Asian Institute of Technology (AIT), Thailand. The authors would like to acknowledge and offer gratitude to the Pakistan Meteorological Department, the Water and Power Development Authority of Pakistan, the India Meteorological Department, and the National Climate Data Center (NCDC), for providing important and valuable data for research. Heartfelt gratitude is also extended to the Higher Education Commission (HEC) of Pakistan and AIT for providing financial support to the first author for his doctoral studies at AIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, R., Babel, M.S. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor Appl Climatol 113, 27–44 (2013). https://doi.org/10.1007/s00704-012-0765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0765-0

Keywords

Navigation