Skip to main content
Log in

Evaluation of pan evaporation modeling with two different neural networks and weather station data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study evaluates neural networks models for estimating daily pan evaporation for inland and coastal stations in Republic of Korea. A multilayer perceptron neural networks model (MLP-NNM) and a cascade correlation neural networks model (CCNNM) are developed for local implementation. Five-input models (MLP 5 and CCNNM 5) are generally found to be the best for local implementation. The optimal neural networks models, including MLP 4, MLP 5, CCNNM 4, and CCNNM 5, perform well for homogeneous (cross-stations 1 and 2) and nonhomogeneous (cross-stations 3 and 4) weather stations. Statistical results of CCNNM are better than those of MLP-NNM during the test period for homogeneous and nonhomogeneous weather stations except for MLP 4 being better in BUS-DAE and POH-DAE, and MLP 5 being better in POH-DAE. Applying the conventional models for the test period, it is found that neural networks models perform better than the conventional models for local, homogeneous, and nonhomogeneous weather stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adeli H, Hung SL (1995) Machine learning neural networks, genetic algorithms, and fuzzy systems. John Wiley & Sons Inc., New York

    Google Scholar 

  • Bruton JM, McClendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43(2):491–496

    Article  Google Scholar 

  • Burman RD (1976) Intercontinental comparison of evaporation estimates. ASCE J Irrig Drain Eng 102(1):109–118

    Google Scholar 

  • Chang FJ, Chang LC, Kao HS, Wu GR (2010) Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. J Hydrol 384(1–2):118–129

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Coulomb CV, Legesse D, Gasse F, Travi Y, Chernet T (2001) Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). J Hydrol 245(1–4):1–18

    Article  Google Scholar 

  • de Ridder NA, Boonstra J (1994) Analysis of water balances. In: Ritzema HP (ed) Drainage principles and applications, 2nd edn, International Institute for Land Reclamation and Improvement (ILRI). Wageningen, The Netherlands, pp 601–633

    Google Scholar 

  • Fahlman SE, Lebiere C (1990) The cascade correlation learning architecture. Rep. CMU-CS-90-100, Carnegie Mellon University, Pittsburgh

  • Fitch JP, Lehman SK, Dowla FU, Lu SY, Johansson EM, Goodman DM (1991) Ship wake-detention procedure using conjugate gradient trained artificial neural networks. IEEE Trans Geosci Remote Sens 29(5):718–726

    Article  Google Scholar 

  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–153

    Article  Google Scholar 

  • Gavin H, Agnew CA (2004) Modeling actual, reference and equilibrium evaporation from a temperate wet grassland. Hydrol Process 18(2):229–246

    Article  Google Scholar 

  • Griffiths JF (1966) Another evaporation formula. Agr Meteorol 3(3–4):257–261

    Article  Google Scholar 

  • Guven A, Kisi O (2011) Daily pan evaporation modeling using linear genetic programming technique. Irrig Sci 29(2):135–145

    Article  Google Scholar 

  • Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. ASCE J Comput Civ Eng 8(2):201–220

    Article  Google Scholar 

  • Kay AL, Davies HN (2008) Calculating potential evaporation from climatic data: a source of uncertainty for hydrological climate changes impact. J Hydrol 358(3–4):221–239

    Article  Google Scholar 

  • Keskin ME, Terzi O (2006) Artificial neural networks models of daily pan evaporation. ASCE J Hydrol Eng 11(1):65–70

    Article  Google Scholar 

  • Kim S, Kim JH, Park KB (2009) Statistical learning theory for the disaggregation of the climatic data. In: Proceedings of 33rd IAHR Congress 2009, IAHR, Vancouver, Canada, pp. 1154–1162

  • Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249

    Article  Google Scholar 

  • Kim S, Shiri J, Kisi O, Singh VP (2013) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27(7):2267–2286

    Article  Google Scholar 

  • Kisi O (2006) Daily pan evaporation modeling using a neuro-fuzzy computing technique. J Hydrol 329(3–4):636–646

    Article  Google Scholar 

  • Kisi O (2007) Streamflow forecasting using different artificial neural network algorithm. ASCE J Hydrol Eng 12(5):532–539

    Article  Google Scholar 

  • Kisi O (2009) Modeling monthly evaporation using two different neural computing technique. Irrig Sci 27(5):417–430

    Article  Google Scholar 

  • Kisi O, Pour-Ali Baba A, Shiri J (2012) Generalized neurofuzzy models for estimating daily pan evaporation values from weather data. ASCE J Irrig Drain Eng 138(4):349–362

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural networks. ASCE J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29(1):11–25

    Article  Google Scholar 

  • Linarce ET (1967) Climate and evaporation from crops. ASCE J Irrig Drain Eng 93(4):61–79

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part 1—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Penman WR (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc Edinb Sect A Math 193(1032):120–145

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Reis RJ, Dias NL (1998) Multi-season lake evaporation: energy budget estimates and CRLE model assessment with limited meteorological observations. J Hydrol 208(3–4):135–147

    Article  Google Scholar 

  • Shiri J, Kisi O (2011) Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (Southwestern Iran). ASCE J Irrig Drain Eng 137(7):412–425

    Article  Google Scholar 

  • Shiri J, Dierickx W, Pour-Ali Baba A, Neamati S, Ghorbani MA (2011) Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrol Res 42(6):491–502

    Article  Google Scholar 

  • Shirsath PB, Singh AK (2010) A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour Manag 24(8):1571–1581

    Article  Google Scholar 

  • Simpson PK (1990) Artificial neural systems: foundations, paradigms, applications and implementations. Pergamon, New York

    Google Scholar 

  • Singh VP (1988) Hydrologic system rainfall–runoff modelling, vol 1. Prentice Hall, New Jersey

    Google Scholar 

  • Sivakumar B, Jayawardena AW, Fernando TMKG (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265:225–245

    Article  Google Scholar 

  • Sudheer KP, Gosain AK, Rangan DM, Saheb SM (2002) Modeling evaporation using an artificial neural network algorithm. Hydrol Process 16:3189–3202

    Article  Google Scholar 

  • Tabari H, Marofi S, Sabziparvar AA (2009) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28(5):399–406

    Article  Google Scholar 

  • Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. ASCE J Hydrol Eng 3(1):26–32

    Article  Google Scholar 

  • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. ASCE J Hydrol Eng 4(3):232–239

    Article  Google Scholar 

  • Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. John Wiley & Sons Inc, New York

    Google Scholar 

  • Wasserman PD (1993) Advanced methods in neural computing. Van Nostrand Reinhold, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Singh, V.P. & Seo, Y. Evaluation of pan evaporation modeling with two different neural networks and weather station data. Theor Appl Climatol 117, 1–13 (2014). https://doi.org/10.1007/s00704-013-0985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0985-y

Keywords

Navigation