Skip to main content

Advertisement

Log in

Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, the thermal comfort and its changes in the Qinghai–Tibet Plateau over the last 50 years have been evaluated by using the physiological equivalent temperature (PET), and a more complete tourism climate picture is presented by the Climate–Tourism–Information Scheme (CTIS). The results show that PET classes in the Qinghai–Tibet Plateau cover six out of the nine-point thermal sensation scale — very cold, cold, cool, slightly cool, neutral and slightly warm — and cold stress is prevailing throughout the year. A small number of slightly cool/warm and neutral days occur in summer months. There occur no warm, hot and very hot days. The frequency of PET classes varies among regions, depending on their altitude/latitude conditions. Xining, Lhasa and Yushu are the top three cities in terms of thermal favorability. With global warming, annual cumulative number of thermally favorable days has been increasing, and that of cold stress has been reducing. The change is more obvious in lower elevation than that in higher elevation regions. The improving thermal comfort in the Qinghai–Tibet Plateau might be a glad tiding for local communities and tourists. Besides PET, CTIS can provide a number of additional bioclimatic information related to tourism and recreational activities. CTIS for Lhasa and Xining shows that sunshine is plentiful all the year round, and windy days occur frequently from late January to early May. This is a useful bioclimatic information for tourism authorities, travel agencies, resorts and tourists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson GS (1999) Human morphology and temperature regulation. Int J Biometeorol 43(3):99–109. doi:10.1007/s004840050123

    Article  Google Scholar 

  • Çahşkan O, Çiçek İ, Matzarakis A (2012) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107:417–425. doi:10.1007/s 00704-011-0489-6

    Article  Google Scholar 

  • Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125. doi:10.1016/j.cities.2011.08.006

    Article  Google Scholar 

  • Chen L, Fang XQ, Li S (2007) The impact of climate warming on the southern boundary of Chinese freezing and cold regions and the heating energy consumption. Chin Sci Bull 52(10):1195–1198. doi:10.1007/s11434-007-0386-7 (in Chinese)

    Article  Google Scholar 

  • China Meteorological Administration (2013) The daily data set of ground climatic data in China. http://old-cdc.cma.gov.cn/shuju/index3.jsp?tpcat=SURF_CLI_CHN_MUL_DAY

  • de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48(1):45–54. doi:10.1007/s00484-003-0177-z

    Article  Google Scholar 

  • Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14(9):2626–2640. doi:10.1016/j.rser.2010.07.040

    Article  Google Scholar 

  • Eludoyin OM, Adelekan IO (2013) The physiologic climate of Nigeria. Int J Biometeorol 57(2):241–264. doi:10.1007/s00484-012-0549-3

    Article  Google Scholar 

  • Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54(1):45–61. doi:10.1007/s00484-009-0251-2

    Article  Google Scholar 

  • Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107:451–459. doi:10.1007/s00704-011-0492-y

    Article  Google Scholar 

  • Fuller S, Bulkeley H (2013) Changing countries, changing climates: achieving thermal comfort through adaptation in everyday activities. Area 45(1):63–69. doi:10.1111/j.1475-4762.2012.01105.x

    Article  Google Scholar 

  • Goh C (2012) Exploring impact of climate on tourism demand. Ann Tourism Res 39(4):1859–188. doi:10.1016/j.annals.2012.05.027

    Article  Google Scholar 

  • Hall R, Roy D, Boling D (2004) Pleistocene migration routes into the Americas: human biological adaptations and environmental constraints. Evolution Anthropol 13(4):132–144. doi:10.1002/evan.20013

    Article  Google Scholar 

  • Hamilton JM, Lau MA (2005) The role of climate information in tourist destination choice decision-making. In: Proceedings of the 17th International Congress of Biometeorology (ICB 2005), Garmisch-Partenkirchen, Germany, 9–5 September 2005. Deutscher Wetterdienst, Offenbach am Main, pp 608–611

  • Holmes MJ, Hacker JN (2007) Climate change, thermal comfort and energy: meeting the design challenges of the 21st century. Energ, Buildings 39(7):802–814. doi:10.1016/j.enbuild.2007.02.009

    Article  Google Scholar 

  • Höppe PR (1993) Heat balance modeling. Experientia 49(9):741–746

    Article  Google Scholar 

  • Höppe PR (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. doi:10.1007/s004840050118

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaiser K, Lai ZP, Schneider B, Reudenbach C, Miehe G, Brückner H (2009) Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene Aeolian sediments in the Lhasa area, southern Tibet (China). Palaeogeogr Palaeoclimatol Palaeoecol 271(3–4):329–342. doi:10.1016/j.palaeo.2008.11.004

    Article  Google Scholar 

  • Kendrick, RJ (2005) An introduction using SPSS. Pearson Education Canada, Newmarket Canada

  • Knez I, Thorsson S (2006) Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int J Biometeorol 50:258–268. doi:10.1007/s00484-006-0024-0

    Article  Google Scholar 

  • Kozak M (2002) Comparative analysis of tourist motivations by nationality and destinations. Tourism Manage 23(3):221–232. doi:10.1016/S0261-5177(01)00090-5

    Article  Google Scholar 

  • Li CL, Kang SC (2006) Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. J Geogr Sci 16(3):337–345. doi:10.1007/s11442-006-0309-6

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290. doi:10.1007/s00484-007-0122-7

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tourism Manage 32:492–500. doi:10.1016/j.tourman.2010.03.017

    Article  Google Scholar 

  • Lin TP, Hwang CC, Cheng HY (2006) The influence of climate information on travel arrangements. In: Proceedings of the 8th leisure, recreation and tourism research symposium, Taipei. Outdoor Recreation Association, Taipei, pp 120–126

    Google Scholar 

  • Madsen DB, Ma H, Brantingham PJ, Gao X, Rhode D, Zhang H, Olsen JW (2006) The late Upper Paleolithic occupation of the northern Tibetan Plateau margin. J Archaeol Sci 33:1433–1444. doi:10.1016/j.jas.2006.01.017

    Article  Google Scholar 

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO News 18:7–10

    Google Scholar 

  • Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39. doi:10.1007/s004840050051

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84. doi:10.1007/s004840050119

    Article  Google Scholar 

  • Matzarakis A, de Freitas C, Scott D (2004) Advances in tourism climatology. Berichte des Meteorologischen Institutes der Universität, Freiburg

    Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modeling radiation fluxes in simple and complex environments – application of the RayMan model. Int J Biometeorol 51:323–334. doi:10.1007/s00484-006-0061-8

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modeling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  • Matzarakis A, Hammerle M, Koch E, Rudel E (2012) The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg. Theorl Appl Climatol 110:645–658. doi:10.1007/s00704-012-0686-y

    Article  Google Scholar 

  • Mayer H, Höppe PR (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49. doi:10.1007/BF00866252

    Article  Google Scholar 

  • Mayhew B, Bellezza J, Wheeler T, Taylor C (1999) Lonely Planet Tibet, 4th edn. Lonely Planet Publications, Melbourne

    Google Scholar 

  • McGregor GR (2012) Human biometeorology. Prog Physl Geogr 36(1):93–109. doi:10.1177/0309133311417942

    Article  Google Scholar 

  • Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL (2011) Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Chang 104(3–4):575–597. doi:10.1007/s10584-009-9790-0

    Article  Google Scholar 

  • Oliver JE (2011) Climate and man’s environment: an introduction to applied climatology. John Wiley, New York

    Google Scholar 

  • Rhode D, Zhang HY, Madsen DB, Gao X, Brantingham PJ, Ma HZ, Olsen JW (2007) Epipaleolithic/early Neolithic settlements at Qinghai Lake, western China. J Archaeol Sci 34(4):600–612. doi:10.1016/j.jas.2006.06.016

    Article  Google Scholar 

  • Solymosi N, Torma C, Kern A et al (2010) Changing climate in Hungary and trends in the annual number of heat stress days. Int J Biometeorol 54(4):423–431. doi:10.1007/s00484-009-0293-5

    Article  Google Scholar 

  • Statistics Bureau of Qinghai Province (2001–2011), Qinghai statistical yearbook. China Statistics Press, Beijing, China (in Chinese)

  • Statistics Bureau of Tibet Autonomous Region (2001–2011) Tibet statistical yearbook. China Statistics Press, Beijing, China (in Chinese)

  • Taffé P (1997) A qualitative response model of thermal comfort. Build Env 32:115–121. doi:10.1016/S0360-1323(96)00035-2

    Article  Google Scholar 

  • Terjung WH (1966) Physiologic climates of the conterminous United States: a bioclimatic classification based on man. Ann Assoc Am Geogr 56(1):141–179

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Bj¨orklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int J Climatol 31:324–335. doi:10.1002/joc.2231

    Article  Google Scholar 

  • Tromp SW (1963) Medical biometeorology. Elsevier, Amsterdam

    Google Scholar 

  • Wong SL, Wan KKW, Yang L, Lam JC (2012) Changes in bioclimates in different climates around the world and implications for the built environment. Build Environ 57:214–222. doi:10.1016/j.buildenv.2012.05.006

    Article  Google Scholar 

  • Yasuhara K, Murakami S, Mimura N (2007) Influence of global warming on coastal infrastructural instability. Sustain Sci 2(1):13–25. doi:10.1007/s11625-006-0015-4

    Article  Google Scholar 

  • Zaninović K, Matzarakis A (2009) The biometeorological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374. doi:10.1007/s00484-009-0219-2

    Article  Google Scholar 

  • Zaninović K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15(2):243–251. doi:10.1127/0941-2948/2006/0119

    Article  Google Scholar 

  • Zheng ZF (2011) Characteristics of climate warming and human body comfort index in Beijing during last 50 years. Adv Mater Res 183–185:1105–1109. doi:10.4028/www.scientific.net/AMR.183-185.1105

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for their suggestive revision comments on the earlier versions of the manuscript. We are grateful to Prof. Matzarakis for his generous provision of the RayMan program, and to Mr. Dune for his careful proofreading of the paper. This work is supported by the National Natural Science Foundation of China (Project No. 30571524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Chi, X. Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theor Appl Climatol 117, 613–624 (2014). https://doi.org/10.1007/s00704-013-1027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1027-5

Keywords

Navigation