Skip to main content
Log in

A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York

    Google Scholar 

  • Arya PS (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Baetke F, Werner H, Wengle H (1990) Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners. J Wind Eng Ind Aerodyn 35:129–147

    Article  Google Scholar 

  • Batchvarova E, Gryning SE (2006) Progress in urban dispersion studies. Theor Appl Climatol 84:57–67

    Article  Google Scholar 

  • Belcher S, Jerram N, Hunt J (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398

    Article  Google Scholar 

  • Böhm M, Finnigan JJ, Raupach MR, Hughes D (2013) Turbulence structure within and above a canopy of bluff elements. Bound-Lay Meteorol 146:393–419

    Article  Google Scholar 

  • Bruun H (1971) Interpretation of a hot wire signal using a universal calibration law. J Phys E Sci Instrum 4:225

    Article  Google Scholar 

  • Castro IP, Robins AG (1977) The flow around a surface-mounted cube in uniform and turbulent streams. J Fluid Mech 79:307–335

    Article  Google Scholar 

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound-Lay Meteorol 118:109–131

    Article  Google Scholar 

  • Cellier P, Brunet Y (1992) Flux-gradient relationships above tall plant canopies. Agric For Meteorol 58:93–117

    Article  Google Scholar 

  • Cheng H, Castro IP (2002a) Near-wall flow development after a step change in surface roughness. Bound-Lay Meteorol 105:411–432

    Article  Google Scholar 

  • Cheng H, Castro IP (2002b) Near wall flow over urban-like roughness. Bound-Lay Meteorol 104:229–259

    Article  Google Scholar 

  • Cheng WC, Liu C-H (2011) Large-eddy simulation of flow and pollutant transports in and above two-dimensional idealized street canyons. Bound-Lay Meteorol 139:411–437

    Article  Google Scholar 

  • Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95:715–740

    Article  Google Scholar 

  • Cionco RM (1965) A mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4:517–522

    Article  Google Scholar 

  • Coceal O, Belcher S (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc 130:1349–1372

    Article  Google Scholar 

  • Coceal O, Belcher S (2005) Mean winds through an inhomogeneous urban canopy. Bound-Lay Meteorol 115:47–68

    Article  Google Scholar 

  • Cook N (1973) On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel. Atmos Environ 7:691–705

    Article  Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905

    Article  Google Scholar 

  • De Ridder K (2010) Bulk transfer relations for the roughness sublayer. Bound-Lay Meteorol 134:257–267

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Redelsperger J-L, Masson V, Banta RM, Newsom RK (2007) Numerical and experimental investigation of the neutral atmospheric surface layer. J Atmos Sci 64:137–156

    Article  Google Scholar 

  • Fackrell J, Robins A (1982) Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J Fluid Mech 117:1–26

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys Fluids 17:035102

    Article  Google Scholar 

  • Florens E, Eiff O, Moulin F (2013) Defining the roughness sublayer and its turbulence statistics. Experiments in Fluids 54:1–15

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Garratt J (1978) Flux profile relations above tall vegetation. Q J Roy Meteorol Soc 104:199–211

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Graefe J (2004) Roughness layer corrections with emphasis on SVAT model applications. Agrical Forest Meteorol 124:237–251

    Article  Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22

    Article  Google Scholar 

  • Hanna SR, Britter RE (2010) Wind flow and vapor cloud dispersion at industrial and urban sites. Wiley, Hoboken

    Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Bound-Lay Meteorol 123:339–363

    Article  Google Scholar 

  • Jackson P (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  Google Scholar 

  • Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Jiménez J, Moin P (1991) The minimal flow unit in near-wall turbulence. J Fluid Mech 225:213–240

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Inc., New York

    Google Scholar 

  • Kanda M (2006) Progress in the scale modeling of urban climate: review. Theor Appl Climatol 84:23–33

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Bound-Lay Meteorol 112:343–368

    Article  Google Scholar 

  • Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Bound-Lay Meteorol 111:55–84

    Article  Google Scholar 

  • Kozmar H (2010) Scale effects in wind tunnel modelling of an urban atmospheric boundary layer. Theor Appl Climatol 100:153–162

    Article  Google Scholar 

  • Kozmar H (2011) Characteristics of natural wind simulations in the TUM boundary layer wind tunnel. Theor Appl Climatol 106:95–104

    Article  Google Scholar 

  • Krogstad P-Å, Antonia R, Browne L (1992) Comparison between rough-and smooth-wall turbulent boundary layers. J Fluid Mech 245:599–617

    Article  Google Scholar 

  • Liu C-H, Ng C-T, Wong CC (2015) A theory of ventilation estimate over hypothetical urban areas. J Hazard Mater 296:9–16

    Article  Google Scholar 

  • Macdonald R (2000) Modelling the mean velocity profile in the urban canopy layer. Bound-Lay Meteorol 97:25–45

    Article  Google Scholar 

  • Macdonald R, Schofield SC, Slawson P (2002) Physical modelling of urban roughness using arrays of regular roughness elements. Water Air Soil Pollut Focus 2:541–554

    Article  Google Scholar 

  • Mohammad AF, Zaki SA, Hagishima A, Ali MSM (2015) Determination of aerodynamic parameters of urban surfaces: methods and results revisited. Theor Appl Climatol 122:635–649

    Article  Google Scholar 

  • Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationships over a boreal forest - roughness sublayer corrections. Agric For Meteorol 98:645–658

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Flux-gradient profiles for momentum and heat over an urban surface. Theor Appl Climatol 84:127–135

    Article  Google Scholar 

  • Nicolini G, Fratini G, Avilov V, Kurbatova J, Vasenev I, Valentini R (2015) Performance of eddy-covariance measurements in fetch-limited applications. Theor Appl Climatol 1-12. doi:10.1007/s00704-015-1673-x

  • Oke TR (2002) Boundary layer climates. Routledge, New York

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, Hoboken

    Google Scholar 

  • Perry AE, Lim KL, Henbest SM (1987) An experimental study of the turbulence structure in smooth- and rough-wall boundary layers. J Fluid Mech 177:437–466

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson J, Katul G (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound-Lay Meteorol 111:565–587

    Article  Google Scholar 

  • Pokrajac D, Campbell LJ, Nikora V, Manes C, McEwan I (2007) Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Experiments in Fluids 42:413–423

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Bound-Lay Meteorol 60:375–395

    Article  Google Scholar 

  • Raupach M, Thom A, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound-Lay Meteorol 18:373–397

    Article  Google Scholar 

  • Raupach M, Coppin P, Legg B (1986) Experiments on scalar dispersion within a model plant canopy, part I: the turbulence structure. Bound-Lay Meteorol 35:21–52

    Article  Google Scholar 

  • Raupach M, Antonia R, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Raupach MR, Finnigan J, Brunei Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Lay Meteorol 78:351–382

    Article  Google Scholar 

  • Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Bound-Lay Meteorol 120:201–218

    Article  Google Scholar 

  • Robins A (1979) The development and structure of simulated neutrally stable atmospheric boundary layers. J Ind Aerod Wind Eng 4:71–100

    Article  Google Scholar 

  • Robins A (2003) Wind tunnel dispersion modelling some recent and not so recent achievements. J Wind Eng Ind Aerod 91:1777–1790

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteorol Soc 126:941–990

    Article  Google Scholar 

  • Salizzoni P, Soulhac L, Mejean P, Perkins RJ (2008) Influence of a two-scale surface roughness on a neutral turbulent boundary layer. Bound-Lay Meteorol 127:97–110

    Article  Google Scholar 

  • Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forest. Phil Trans R Soc London B 324:299–334

    Article  Google Scholar 

  • Snyder WH, Castro IP (2002) The critical Reynolds number for rough-wall boundary layers. J Wind Eng Ind Aerod 90:41–54

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, Netherlands

    Book  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT press, USA

    Google Scholar 

  • Tomas S, Eiff O, Masson V (2011) Experimental investigation of turbulent momentum transfer in a neutral boundary layer over a rough surface. Bound-Lay Meteorol 138:385–411

    Article  Google Scholar 

  • Townsend AA (1980) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    Google Scholar 

  • Uehara K, Murakami S, Oikawa S, Wakamatsu S (2000) Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos Environ 34:1553–1562

    Article  Google Scholar 

  • Verhoef A, McNaughton KG, Jacobs AFG (1997) A parameterization of momentum roughness length and displacement height for a wide range of canopy densities. Hydrol Earth Syst Sci 1:81–91

    Article  Google Scholar 

  • Xie Z, Voke PR, Hayden P, Robins AG (2004) Large-eddy simulation of turbulent flow over a rough surface. Bound-Lay Meteorol 111:417–440

    Article  Google Scholar 

  • Yumao X, Chaofu Z, Zhongkai L, Wei Z (1997) Turbulent structure and local similarity in the tower layer over the Nanjing area. Bound-Lay Meteorol 82:1–21

    Article  Google Scholar 

Download references

Acknowledgement

The first author wishes to thank the Hong Kong Research Grants Council (RGC) for financially supporting his study through the Hong Kong PhD Fellowship (HKPF) scheme. This project is partly supported by the General Research Fund (GRF) of RGC HKU 714913E. Technical support from Mr. Vincent KW Lo is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ho Liu.

Additional information

Revised manuscript submitted to Theoretical and Applied Climatology on 17 June 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, YK., Liu, CH. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections. Theor Appl Climatol 130, 305–320 (2017). https://doi.org/10.1007/s00704-016-1877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1877-8

Keywords

Navigation