Skip to main content

Advertisement

Log in

Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abuzaid AH, Mohamed IB, Hussin AG (2012) Boxplot for circular variables. Comput Stat 27(3):381–392. doi:10.1007/s00180-011-0261-5

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Limp J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci U S A 105(11):4197–4202. doi:10.1073/pnas.0708921105

    Article  Google Scholar 

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological irrigation data. SCS Technical Paper 96. USDA Soil Conservation Service, Washington, D.C.

    Google Scholar 

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235

    Google Scholar 

  • Bohn U, Neuhäusl R, with contributions by Gollub G, Hettwer C, Neuhäuslová Z, Raus Th, Schlüter H, Weber H (2003) Map of the natural vegetation of Europe. Scale 1:2 500 000. Federal Agency for Nature Conservation, Bonn, Germany

  • Box EO (1981) Predicting physiognomic vegetation types with climate variables. Vegetatio 45(2):127–139. doi:10.1007/BF00119222

    Article  Google Scholar 

  • Breuer H, Ács F, Skarbit N (2015) Climate change in Hungary during the twentieth century according to Feddema. Theor Appl Climatol (in press). doi:10.1007/s00704-015-1670-0

    Google Scholar 

  • Burt JE, Barber GM, Rigby DL (2009) Elementary statistics for geographers, Third edn. Guildord Press, New York

    Google Scholar 

  • Chakraborty A, Joshi PK, Ghosh A, Areendran G (2013) Assessing biome boundary shifts under climate change scenarios in India. Ecol Indic 34:536–547. doi:10.1016/j.ecolind.2013.06.013

    Article  Google Scholar 

  • Chen X, Zhang X-S, Li B-L (2003) The possible response of life zones in China under global climate change. Glob Planet Chang 38(3–4):327–337. doi:10.1016/S0921-8181(03)00115-2

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007a) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81(Suppl 1):1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2007b) The HIRHAM regional climate model version 5 (β). Technical Report 06–17. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  • Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510. doi:10.1046/j.1461-0248.2001.00261.x

    Article  Google Scholar 

  • Claussen M (1996) Variability of global biome patterns as a function of initial and boundary conditions in a climate model. Clim Dyn 12(6):371–379. doi:10.1007/BF00211683

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. doi:10.1177/001316446002000104

    Article  Google Scholar 

  • Cramer W (2002) Biome models. In: Mooney HA, Canadell JG (eds) Encyclopaedia of global environmental change. Volume 2. The Earth system: biological and ecological dimensions of global environmental change. John Wiley & Sons Ltd, Chichester, pp. 166–171

    Google Scholar 

  • de Castro M, Gallardo C, Jylha K, Tuomenvirta H (2007) The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim Chang 81(Suppl 1):329–341. doi:10.1007/s10584-006-9224-1

    Article  Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57(1–2):16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones RG (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Clim Dyn 14(3):173–189. doi:10.1007/s003820050216

    Article  Google Scholar 

  • Dobor L, Barcza Z, Hlásny T, Havasi Á, Horváth F, Ittzés P, Bartholy J (2015) Bridging the gap between climate models and impact studies: the FORESEE database. Geosci Data J 2(1):1–11. doi:10.1002/gdj3.22

    Article  Google Scholar 

  • Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39(12):2119–2131. doi:10.1111/j.1365-2699.2011.02659.x

    Article  Google Scholar 

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci 16(9):3391–3404. doi:10.5194/hess-16-3391-2012

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Chang 7(1):29–43. doi:10.1007/BF00139439

    Article  Google Scholar 

  • Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land use. Agrofor Syst 45(1–3):1–21. doi:10.1023/A:1006219721151

    Article  Google Scholar 

  • Fábián ÁP, Matyasovszky I (2010) Analysis of climate change in Hungary according to an extended Köppen classification system, 1971–2060. Időjárás 114(4):251–261

    Google Scholar 

  • Falk W, Mellert KH (2011) Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. J Veg Sci 22(4):621–634. doi:10.1111/j.1654-1103.2011.01294.x

    Article  Google Scholar 

  • Feddema JJ (2005) A revised Thornthwaite-type global climate classification. Phys Geogr 26(6):442–466. doi:10.2747/0272-3646.26.6.442

    Article  Google Scholar 

  • Feng S, Ho C-H, Hu Q, Oglesby RJ, Jeong S-J, Kim B-M (2012) Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification. Clim Dyn 38(7):1359–1373. doi:10.1007/s00382-011-1020-6

    Article  Google Scholar 

  • Fenna D (2007) Cartographic science: a compendium of map projections, with derivations. Taylor & Francis Group, Boca Raton, Florida

    Google Scholar 

  • Fischlin A, Ayres M, Karnosky D, Kellomäki S, Louman B, Ong C, Plattner G-K, Santoso H, Thompson I, Booth TH, Marcar N, Scholes B, Swanston C, Zamolodchikov D (2009) Future environmental impacts and vulnerabilities. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change. A global assessment report. IUFRO world series volume 22. International Union of Forest Research Organizations, Helsinki, pp. 53–100

    Google Scholar 

  • Führer E, Horváth L, Jagodics A, Machon A, Szabados I (2011) Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3):205–216

    Google Scholar 

  • Gallardo C, Gil V, Hagel E, Tejeda C, de Castro M (2013) Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen-Trewartha classification. Int J Climatol 33(9):2157–2166. doi:10.1002/joc.3580

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes. Mon Weather Rev 121(10):2794–2813. doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99. doi:10.13031/2013.26773

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049. doi:10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Henderson-Sellers A (1994) Global terrestrial vegetation ‘prediction’: the use and abuse of climate and application models. Prog Phys Geogr 18(2):209–246. doi:10.1177/030913339401800203

    Article  Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kühn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21(1):50–63. doi:10.1111/j.1466-8238.2010.00613.x

    Article  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105(2727):367–368. doi:10.1126/science.105.2727.367

    Article  Google Scholar 

  • Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130(3375):572. doi:10.1126/science.130.3375.572

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63(1–2):119–129. doi:10.1007/BF01025368

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Jump AS, Mátyás Cs, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 22(12):694–701. doi:10.1016/j.tree.2009.06.007

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, Fourth edn. Charles Griffin, London

    Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A (2009) Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol 368(1–4):117–130. doi:10.1016/j.jhydrol.2009.01.035

    Article  Google Scholar 

  • Khalyani AH, Gould WA, Harmsen E, Terando A, Quinones M, Collazo JA (2016) Climate change implications for tropical islands: interpolating and interpreting statistically downscaled GCM projections for management and planning. J Appl Meteorol Climatol 55(2):265–282. doi:10.1175/JAMC-D-15-0182.1

    Article  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie. Verlag von Gebrüder Borntraeger, Berlin, pp. 1–44

    Google Scholar 

  • Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, Basel

    Google Scholar 

  • Kullman L (2001) Twentieth century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30(2):72–80. doi:10.1579/0044-7447-30.2.72

    Article  Google Scholar 

  • Leemans R (1990) Global data sets collected and compiled by the Biosphere Project. IIASA Working Paper. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Leggett J, Pepper WJ, Swart RJ (1992) Emissions scenarios for IPCC: an update. In: Houghton JT, Callander BA, Varney SK (eds) Climate change 1992. The supplementary report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge, pp. 69–95

    Google Scholar 

  • Li G, Wen Z, Guo K, Du S (2015) Simulating the effect of climate change on vegetation zone distribution on the Loess Plateau, Northwest China. Forests 6(6):2092–2108. doi:10.3390/f6062092

    Article  Google Scholar 

  • Limonard CBG (1978) Missing values in time series and the implications on autocorrelation analysis. Anal Chim Acta 103(2):133–140. doi:10.1016/S0003-2670(01)84033-2

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. doi:10.2307/1907187

    Article  Google Scholar 

  • Martazinova V, Ivanova O, Shandra O (2011) Climate and treeline dynamics in the Ukrainian Carpathians Mts. Folia Oecol 38(1):66–72

    Google Scholar 

  • Mather JR, Yoshioka GA (1968) The role of climate in the distribution of vegetation. Ann Assoc Am Geogr 58(1):29–41. doi:10.1111/j.1467-8306.1968.tb01634.x

    Article  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM, Edwards ME, Kattge J, Midgley G, Morin X, Prentice IC (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol 26(5):249–259. doi:10.1016/j.tree.2011.02.012

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistics. Ecol Model 62(4):275–293. doi:10.1016/0304-3800(92)90003-W

    Article  Google Scholar 

  • Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Chang Biol 13(1):108–122. doi:10.1111/j.1365-2486.2006.01289.x

    Article  Google Scholar 

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Differbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409. doi:10.1175/Bams-88-9-1395

    Article  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9(2):131–140. doi:10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Pongrácz R, Bartholy J, Miklós E (2011) Analysis of projected climate change for Hungary using ENSEMBLES simulations. Appl Ecol Environ Res 9(4):387–398

    Article  Google Scholar 

  • Pongrácz R, Bartholy J, Kis A (2014) Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás 118(4):305–321

    Google Scholar 

  • Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Sitch S, Smith B, Sykes MT (2007) Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, Heidelberg, pp. 175–192. doi:10.1007/978-3-540-32730-1_15

    Chapter  Google Scholar 

  • Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus Ser A 60(5):898–910. doi:10.1111/j.1600-0870.2008.00341.x

    Article  Google Scholar 

  • Rasztovits E, Móricz N, Berki I, Pötzelsberger E, Mátyás Cs (2012) Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Időjárás 116(3):173–194

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. MPI-Report No. 349. Max Planck Institute for Meteorology, Hamburg

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus Ser A 63(1):4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185. doi:10.1046/j.1365-2486.2003.00569.x

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10(6):621–637. doi:10.1046/j.1466-822X.2001.t01-1-00256.x

    Article  Google Scholar 

  • Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer/northern hardwoods zone of northern Europe. Clim Chang 34(2):161–177. doi:10.1007/BF00224628

    Article  Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23(2):203–233

    Google Scholar 

  • Szelepcsényi Z, Breuer H, Sümegi P (2014a) The climate of Carpathian Region in the twentieth century based on the original and modified Holdridge life zone system. Cent Eur J Geosci 6(3):293–307. doi:10.2478/s13533-012-0189-5

    Google Scholar 

  • Szelepcsényi Z, Breuer H, Sümegi P (2014b) Hogyan változtak a Kárpát-medence régiójának életzónái a múlt században? (How did the Carpathian Region’s life zones altered in the last century?). In: Sümegi P (ed) Környezetföldtani és környezettörténeti kutatások a dunai Alföldön (Researches in environmental geology and environmental history for the Danubian Plain). GeoLitera, Szeged, pp. 163–171 (in Hungarian)

    Google Scholar 

  • Tatli H, Dalfes HN (2016) Defining Holdridge’s life zones over Turkey. Int J Climatol 36(11):3864–3872. doi:10.1002/joc.4600

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17(12):5061–5077. doi:10.5194/hess-17-5061-2013

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi:10.2307/210739

    Article  Google Scholar 

  • Treml V, Chuman T (2015) Ecotonal dynamics of the altitudinal forest limit are affected by terrain and vegetation structure variables: an example from the Sudetes Mountains in Central Europe. Arct Antarc Alp Res 47(1):133–146. doi:10.1657/AAAR0013-108

    Article  Google Scholar 

  • Trewartha GT, Horn LH (1980) An introduction to climate, Fifth edn. McGraw-Hill, New York

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:1–110

    Google Scholar 

  • van de Geijn SC, Goudriaan J (1996) The effects of elevated CO2 and temperature change on transpiration and crop water use. In: Bazzaz F, Sombroek W (eds) Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes. Food and Agriculture Organization of the United Nations, John Wiley & Sons Ltd, Chichester, pp. 101–122

    Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  • van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO version 2.1. KNMI Technical Report 302. Royal Netherlands Meteorological Institute, De Bilt

    Google Scholar 

  • Velarde SJ, Malhi Y, Moran D, Wright J, Hussain S (2005) Valuing the impacts of climate change on protected areas in Africa. Ecol Econ 53(1):21–33. doi:10.1016/j.ecolecon.2004.07.024

    Article  Google Scholar 

  • Wang L, Ranasinghe R, Maskey S, van Gelder PHAJM, Vrijling JK (2016) Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: a case study of the Huai River Basin, China. Int J Climatol 36(1):145–164. doi:10.1002/joc.4334

    Article  Google Scholar 

  • Watterson IG, Dix MR, Gordon HB, McGregor JL (1995) The CSIRO nine-level atmospheric general circulation model and its equilibrium present and doubled CO2 climates. Aust Meteorol Mag 44(2):111–125

    Google Scholar 

  • Wolf A, Callaghan TV, Larson K (2008) Future changes in vegetation and ecosystem function of the Barents Region. Clim Chang 87(1–2):51–73. doi:10.1007/s10584-007-9342-4

    Article  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yates DN, Kittel TGF, Cannon RF (2000) Comparing the correlative Holdridge model to mechanistic biogeographical models for assessing vegetation distribution response to climatic change. Clim Chang 44(1–2):59–87. doi:10.1023/A:1005495908758

    Article  Google Scholar 

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218. doi:10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  • Yue TX, Liu JY, Jørgensen SE, Gao ZQ, Zhang SH, Deng XZ (2001) Changes of Holdridge life zone diversity in all of China over half a century. Ecol Model 144(2–3):153–162. doi:10.1016/S0304-3800(01)00370-2

    Article  Google Scholar 

  • Yue TX, Fan ZM, Liu JY, Wei BX (2006) Scenarios of major terrestrial ecosystems in China. Ecol Model 199(3):363–376. doi:10.1016/j.ecolmodel.2006.05.026

    Article  Google Scholar 

  • Zimmermann NE, Jandl R, Hanewinkel M, Kunstler G, Kölling C, Gasparini P, Breznikar A, Meier ES, Normand S, Ulmer U, Gschwandtner T, Veit H, Naumann M, Falk W, Mellert K, Rizzo M, Skudnik M, Psomas A (2013) Potential future ranges of tree species in the Alps. In: Cerbu GA, Hanewinkel M, Gerosa G, Jandl R (eds) Management strategies to adapt alpine space forests to climate change risks. InTech, Rijeka, pp. 37–48. doi:10.5772/56279

    Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’. The ENSEMBLES dataset used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539), whose support is gratefully acknowledged. We acknowledge the E-OBS dataset from the EU FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We are really grateful for János Geiger (University of Szeged, Hungary) for his valuable advices in the trend analysis. We would like to thank Ágnes Havasi (Eötvös Loránd University, Hungary) for careful proof reading of the manuscript. Finally, we gratefully thank the anonymous reviewers for their valuable suggestions and constructive comments that helped us to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szelepcsényi.

Electronic supplementary material

ESM 1

(PDF 1485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szelepcsényi, Z., Breuer, H., Kis, A. et al. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system. Theor Appl Climatol 131, 593–610 (2018). https://doi.org/10.1007/s00704-016-1987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1987-3

Navigation