Skip to main content

Advertisement

Log in

A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region’s physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeare SM (2009) Comparisons of boosted regression tree, GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the Gulf of Mexico Lonline Fishery. Master’s Thesis, Louisiana State University

  • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130

    Article  Google Scholar 

  • Aertsen W, Kint V, Van Orshoven J, Muys B (2011) Evaluation of modelling techniques for forest site productivity prediction in contrasting eco-regions using stochastic multi-criteria acceptability analysis (SMAA). Environ Model Softw 26(7):929–937

    Article  Google Scholar 

  • Ahmadi H, Nazari Samani A, Malekian A (2010) The qanat: a living history in Iran. Water and sustainability in arid regions. Springer, Netherlands, pp 125–138

    Book  Google Scholar 

  • Ballabio C, Sterlacchini S (2012) Support vector machines for land-slide susceptibility mapping: the Staffora River basin case study, Italy. Math Geosci 44:47–70

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Computer Methamphetamine Geos, vol. 13. Pergamon, New York

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831

    Article  Google Scholar 

  • Cherkassky V, Mulier F (2007) Learning from data: concepts, theory, and methods. Wiley, New York

    Book  Google Scholar 

  • Chezgi J, Pourghasemi HR, Naghibi SA, Moradi HR, Kheirkhah Zarkesh M (2015) Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province. Iran Geocarto Int 31:628–646. doi:10.1080/10106049.2015.1073366

    Article  Google Scholar 

  • Chirici G, Mura M, McInerney D, Py N, Tomppo EO, Waser LT, McRoberts RE (2015) A meta-analysis and review of the literature on the k-nearest neighbors technique for forestry applications that use remotely sensed data. Draft 176:282–294. doi:10.1016/j.rse.2016.02.001

    Google Scholar 

  • Cortez P, Embrechts MJ (2013) Using sensitivity analysis and visualization techniques to open black box data mining models. Inf Sci 225:1–17. doi:10.1016/j.ins.2012.10.039

    Article  Google Scholar 

  • Davoodi Moghaddam D, Rezaei M, Pourghasemi HR, Pourtaghie ZS, Pradhan B (2015) Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab J Geosci 8(2):913–929

    Article  Google Scholar 

  • Eker AM, Dekmen M, Cambazoglu S, Duzgun SHB, Akgun H (2015) Evaluation and comparison of landslide susceptibility mapping methods: a case study for the Ulus district, Bartın, northern Turkey. Int J Geogr Inf Sci 29(1):132–158

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813

    Article  Google Scholar 

  • Everitt BS, Landau S, Leese M, Stahl D (2011) Miscellaneous clustering methods, in cluster analysis, 5th edn. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  • Felicisimo A, Cuartero A, Remondo J, Quiros E (2012) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Annual Statistics 19:1–141

    Article  Google Scholar 

  • Geology Survey of Iran (GSI) (1997) http://www.gsi.ir/Main/Lang_en/ index.html

  • Granitto PM, Biasioli F, Endrizzi I, Gasperi F (2008) Discriminant models based on sensory evaluations: single assessors versus panel average. Food Qual Prefer 19(6):589–595. doi:10.1016/j.foodqual.2008.03.006

    Article  Google Scholar 

  • Gutiérrez ÁG, Schnabel S, Lavado Contador JF (2009) Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol Model 220(24):3630–3637

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  • Hong H, Pradhan B, Xu C, Tien Bui D (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133:266–281

    Article  Google Scholar 

  • Hong H, Naghibi SA, Pourghasemi HR, Pradhan B (2016) GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci 9(2):112. doi:10.1007/s12517-015-2094-y

    Article  Google Scholar 

  • Immitzer M, Atzberger C, Koukal T (2012) Eignung von WorldView-2 Satellitenbildern für die Baumartenklassifizierung unter besonderer Berücksichtigung der vier neuen Spektralkanäle. Photogramm Fernerkun:573–588

  • Karami A, Khoorani A, Noohegar A, Shamsi SR, Moosavi V (2015) Gully erosion mapping using object-based and pixel-based image classification methods. Environ Eng Geosci 21(2):101–110

    Article  Google Scholar 

  • Karimi SE, Emami SN, Tahmasebipour N, Pourghasemi HR, Naghibi SA, Arami SA, Pradhan B (2016) Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Arab J Geosci 9(3):201. doi:10.1007/s12517-015-2258-9

    Article  Google Scholar 

  • Kavzoglu T, Sahin E, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439

    Article  Google Scholar 

  • Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281

    Article  Google Scholar 

  • Lee S, Song KY, Kim Y, Park I (2012a) Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeol J 20:1511–1527

    Article  Google Scholar 

  • Lee S, Park I, Choi J-K (2012b) Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environ Manag 49(2):347–358

    Article  Google Scholar 

  • Mahdavi M (2004) Applied hydrology, vol 2, 5th edn. University of Tehran Press, Tehran

    Google Scholar 

  • Mallet Y, Coomans D, deVel O (1996) Recent developments in discriminant analysis on high dimensional spectral data. Chemometrics Intell. Lab Syst 35(2):157–173

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123:225–234

    Article  Google Scholar 

  • Mojiri HR, Zarei AR (2006) The investigation of precipitation condition in the Zagros area and its effects on the central plateau of Iran. The 2nd Conference of Water Resource Management. Tehran, Iran

  • Moosavi V, Niazi Y (2015) Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides. doi:10.1007/s10346-014-0547-0

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manag. doi:10.1007/s11269-015-1114-8

    Google Scholar 

  • Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Inf 8(1):171–186

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44. doi:10.1007/s10661-015-5049-6

    Article  Google Scholar 

  • Naghibi SA, Moradi Dashtpagerdi M (2016) Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeol J. doi:10.1007/s10040-016-1466-z

    Google Scholar 

  • Nazari Samani A, Farzadmehr J (2006) Qanat as a traditional and advantageous approach for water supply in Iran. In: Proceedings of the International Symposium on Water and Management for Sustainable Irrigated Agriculture, Adana, Turkey

  • Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison–Wesley/Pearson, Harlow, p 394

    Google Scholar 

  • Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Oliveira S, Oehler F, San-Miguel-Ayanz J (2012) Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manag 275:117–129

    Article  Google Scholar 

  • Ozdemir A (2011a) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308

    Article  Google Scholar 

  • Ozdemir A (2011b) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405:123–136

    Article  Google Scholar 

  • Paraskevas T, Constantinos L, Dimitrios R, Ioanna L (2015) Landslide susceptibility assessments using the k-nearest neighbor algorithm and expert knowledge. Case study of the basin of Selinounda river, Achaia County, Greece. SafeChania 2015, The knowledge triangle in the Civil Protection Service Center of Mediterranean Architecture, Chania, Crete, Greece, 10–14 June 2015

  • Peters J, De Baets B, Verhoest NEC, Samson R, Degroeve S, De Becker P, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207:304–318

    Article  Google Scholar 

  • Perrier ER, Salkini AB, editors (1991) Supplemental irrigation in the near East and North Africa. Proceedings of a Workshop on Regional Consultation on Supplemental Irrigation. ICARDA and FAO, 1987 Dec 7–9; Rabat, Morroco: Kluwer Academic Publishers; p. 611

  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci 122:349–369

    Article  Google Scholar 

  • Pourghasemi HR, Beheshtirad M (2014) Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the KoohrangWatershed, Iran. Geocarto Int. doi:10.1080/10106049. 2014.966161

    Google Scholar 

  • Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051–07-0, http://www.R-project.org.

  • Rahmati O, Nazari Samani A, Mahdavi M, Pourghasemi HR, Zeinivand H (2014) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. doi:10.1007/s12517-014-1668-4

    Google Scholar 

  • Ramos-Canon AM, Prada-Sarmiento LF, Trujillo-Vela MG, Macias JP, Santos-R AC (2015) Alfonso Mariano Ramos-Cañón I Luis Felipe Prada-Sarmiento I Mario Germán Trujillo-Vela I Juan Pablo Macías I Ana Carolina Santos-R Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia. Landslides, DOI: 10.1007/s10346-015-0593-2

  • Razandi Y, Pourghasemi HR, Samani Neisani N, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf. doi:10.1007/s12145-015-0220-8

    Google Scholar 

  • Reyn SC, Sabatier R, Molinari N (2006) Choice of B-splines with free parameters in the flexible discriminant analysis context. Comput Stat Data Anal 51(3):1765–1778. doi:10.1016/j.csda.2005.11.018

    Article  Google Scholar 

  • Ridgeway G (2006) gbm: generalized boosted regression models. R package version 1.5–5, URL http://CRAN.R-project.org/.

  • Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

  • Samui P, Kurup P (2012) Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft Comput 16(8):1347–1351

    Article  Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using random forests. Remote Sens Environ 115(10):2564–2577

    Article  Google Scholar 

  • Tayyebi A, Pijanowski BC (2014) Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools. Int J Appl Earth Obs Geoinf 28:102–116

    Article  Google Scholar 

  • Tebaldi C, Nychka D, Brown BG, Sharman R (2002) Flexible discriminant techniques for forecasting clear-air turbulence. Environmetrics 13(8):859–878. doi:10.1002/env.562

  • Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125:91–101

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive bayes models. Math Probl Eng. doi:10.1155/2012/974638

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. doi:10.1007/s10346-015-0557-6

    Google Scholar 

  • Tien Bui D, Pham BT, Nguyen QP, Hoang N-D (2016) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digital Earth 8947:1–21. doi:10.1080/17538947.2016.1169561

    Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schroder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39

    Article  Google Scholar 

  • Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14. 10.1007/s10115-007-0114-2

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2015) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir region, Saudi Arabia. Landslides. doi:10.1007/s10346-015-0614-1

    Google Scholar 

  • Zhu Y, Tan TL (2016) Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 159:68–77

    Article  Google Scholar 

  • Zabihi M, Pourghasemi HR, Pourtaghi ZS, Behzadfar M (2016) GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ Earth Sci 75(8):665. doi:10.1007/s12665-016-5424-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers and editorial positive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghibi, S.A., Pourghasemi, H.R. & Abbaspour, K. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor Appl Climatol 131, 967–984 (2018). https://doi.org/10.1007/s00704-016-2022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-2022-4

Keywords

Navigation