Skip to main content

Advertisement

Log in

Drought characterisation based on an agriculture-oriented standardised precipitation index

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Drought is a major natural hazard with significant effects in the agricultural sector, especially in arid and semi-arid regions. The accurate and timely characterisation of agricultural drought is crucial for devising contingency plans, including the necessary mitigation measures. Many drought indices have been developed during the last decades for drought characterisation and analysis. One of the most widely used indices worldwide is the Standardised Precipitation Index (SPI). Although other comprehensive indices have been introduced over the years, SPI remains the most broadly accepted index due to a number of reasons, the most important of which are its simple structure and the fact that it uses only precipitation data. In this paper, a modified version of SPI is proposed, namely the Agricultural Standardised Precipitation Index (aSPI), based on the substitution of the total precipitation by the effective precipitation, which describes more accurately the amount of water that can be used productively by the plants. Further, the selection of the most suitable reference periods and time steps for agricultural drought identification using aSPI is discussed. This conceptual enhancement of SPI aims at improving the suitability of the index for agricultural drought characterisation, while retaining the advantages of the original index, including its dependence only on precipitation data. The evaluation of the performance of both SPI and aSPI in terms of correlating drought magnitude with crop yield response in four regions of Greece under Mediterranean conditions indicated that aSPI is more robust than the original index in identifying agricultural drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramovitz M, Stegun I (1965) Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematics Series 55, Washington DC, USA

  • Al-Faraj FA, Tigkas D, Scholz M (2016) Irrigation efficiency improvement for sustainable agriculture in changing climate: a transboundary watershed between Iraq and Iran. Environ Process 3(3):603–616

    Article  Google Scholar 

  • Angelidis P, Maris F, Kotsovinos N, Hrissanthou V (2012) Computation of drought index SPI with alternative distribution functions. Water Resour Manag 26(9):2453–2473

    Article  Google Scholar 

  • Bautista-Capetillo C, Carrillo B, Picazo G, Júnez-Ferreira H (2016) Drought assessment in Zacatecas, Mexico. Water 8(10):416

    Article  Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G (2015) Probabilistic forecasting of drought class transitions in Sicily (Italy) using standardized precipitation index and North Atlantic oscillation index. J Hydrol 526:136–150

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Gerstengarbe FW, Werner PC, Sutera A (2004) Potential predictability of dry and wet periods: Sicily and Elbe-Basin (Germany). Theor Appl Climatol 77(3):125–138

    Google Scholar 

  • Bordi I, Fraedrich K, Petitta M, Sutera A (2007) Extreme value analysis of wet and dry periods in Sicily. Theor Appl Climatol 87(1):61–71

    Article  Google Scholar 

  • Bos MG, Kselik RA, Allen RG, Molden D (2008) Water requirements for irrigation and the environment. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-8948-0

  • Brouwer C, Heibloem M (1986) Irrigation water management: irrigation water needs. Training manual no. 3. FAO, Rome

    Google Scholar 

  • Byun HR, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12(9):2747–2756

    Article  Google Scholar 

  • Cammalleri C, Micale F, Vogt J (2016) A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency. Hydrol Process 30(2):289–301

    Article  Google Scholar 

  • Cancelliere A, Mauro GD, Bonaccorso B, Rossi G (2007) Drought forecasting using the standardized precipitation index. Water Resour Manag 21(5):801–819

    Article  Google Scholar 

  • Carrao H, Russo S, Sepulcre-Canto G, Barbosa P (2016) An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int J Appl Earth Obs Geoinf 48:74–84

    Article  Google Scholar 

  • Chen T, Xia G, Liu T, Chen W, Chi D (2016) Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability 8(10):1069

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  Google Scholar 

  • Dastane NG (1978) Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Paper, No.25, Rome, Italy

  • Ebrahimpour M, Rahimi J, Nikkhah A, Bazrafshan J (2015) Monitoring agricultural drought using the standardized effective precipitation index. J Irrig Drain Eng 141(1):04014044

    Article  Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report No. 97–2, Colorado State University, Fort Collins, Colorado, USA

  • Evans LT, Fischer RA (1999) Yield potential: its definition, measurement and significance. Crop Sci 39:1544–1551

    Article  Google Scholar 

  • Feddes RA, Kabat P, Van Bakel P, Bronswijk JJB, Halbertsma J (1988) Modelling soil water dynamics in the unsaturated zone—state of the art. J Hydrol 100(1):69–111

    Article  Google Scholar 

  • Guttman NB (1994) On the sensitivity of sample L moments to sample size. J Clim 7(6):1026–1029

    Article  Google Scholar 

  • Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322

    Article  Google Scholar 

  • Hess T (2010) Estimating green water footprints in a temperate environment. Water 2(3):351–362

    Article  Google Scholar 

  • Iglesias A, Quiroga S, Schlickenrieder J (2010) Climate change and agricultural adaptation: assessing management uncertainty for four crop types in Spain. Clim Res 44(1):83–94

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. In: Field CB et al (eds) A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jensen ME (2007) Beyond irrigation efficiency. Irrig Sci 25(3):233–245

    Article  Google Scholar 

  • Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78(4):621–636

  • Kourgialas NN, Karatzas GP, Morianou G (2015) Water management plan for olive orchards in a semi-mountainous area of Crete, Greece. Glob Nest J 17(1):72–81

    Article  Google Scholar 

  • Labudova L, Labuda M, Takac J (2017) Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian lowland and the east Slovakian lowland. Theor Appl Climatol 128(1–2):491–506

    Article  Google Scholar 

  • Li R, Tsunekawa A, Tsubo M (2017) Assessment of agricultural drought in rainfed cereal production areas of northern China. Theor Appl Climatol 127(3–4):597–609

    Article  Google Scholar 

  • Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics inThessaly region, Greece. Nat Hazards Earth Syst Sci 4(5/6):719–731

    Article  Google Scholar 

  • Loukas A, Vasiliades L, Tzabiras J (2008) Climate change effects on drought severity. Adv Geosci 17:23–29

    Article  Google Scholar 

  • Mallya G, Zhao L, Song XC, Niyogi D, Govindaraju RS (2013) 2012 Midwest drought in the United States. J Hydrol Eng 18(7):737–745

    Article  Google Scholar 

  • Manatsa D, Mukwada G, Siziba E, Chinyanganya T (2010) Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the standardized precipitation index (SPI). Theor Appl Climatol 102(3–4):287–305

    Article  Google Scholar 

  • Martin DL, Gilley JR (1993) Irrigation water requirements. In: National Engineering Handbook, Section 15 – Irrigation. USDA Soil Conservation Service, 210-vi-NEH

  • McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: proceedings of the. In: 8th conference on applied climatology. Anaheim, CA, Jan. 17–23, 1993. American Meteorological Society, Boston, pp 179–184

    Google Scholar 

  • Michaelides S, Pashiardis S (2008) Monitoring drought in Cyprus during the 2007–2008 hydrometeorological year by using the standardized precipitation index (SPI). Eur Water 23-24:123–131

    Google Scholar 

  • Mishra AK, Singh VP (2009) Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty. J Geophys Res 114:D06120

    Article  Google Scholar 

  • Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897

    Article  Google Scholar 

  • Narasimhan B, Srinivasan R (2005) Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric For Meteorol 133(1):69–88

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Res Pap No 45, US Weather Bureau, Washington DC, 58p

  • Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21:156–161

    Article  Google Scholar 

  • Patwardhan AS, Nieber JL, Johns EL (1990) Effective Rainfall Estimation Methods. J Irrig Drain Eng 116(2):182–193

  • Peters AJ, Rundquist DC, Wilhite DA (1991) Satellite detection of the geographic core of the 1988 Nebraska drought. Agric For Meteorol 57(1-3):35–47

  • Potop V, Türkott L, Kožnarová V, Možný M (2010) Drought episodes in the Czech Republic and their potential effects in agriculture. Theor Appl Climatol 99(3–4):373–388

    Article  Google Scholar 

  • Quiring SM, Ganesh S (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric For Meteorol 150(3):330–339

    Article  Google Scholar 

  • Quiroga S, Fernández-Haddad Z, Iglesias A (2011) Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications. Hydrol Earth Syst Sci 15:505–518

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop—the FAO crop model for predicting yield response to water: II. Main algorithms and software description. Agron J 101:438–447

    Article  Google Scholar 

  • Rahman MM, Islam MO, Hasanuzzaman M (2008) Study of effective rainfall for irrigated agriculture in south-eastern part of Bangladesh. World J Agric Sci 4(4):453–457

    Google Scholar 

  • Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887

  • Sadras VO, Cassman KGG, Grassini P, Hall AJ, Bastiaanssen WGM, Laborte AG, Milne AE, Sileshi G, Steduto P (2015) Yield gap analysis of field crops—methods and case studies. FAO and DWFI - FAO Water Reports No. 41, Rome, Italy

  • Sanchez N, Gonzalez-Zamora A, Piles M, Martinez-Fernandez J (2016) A new soil moisture agricultural drought index (SMADI) integrating MODIS and SMOS products: a case of study over the Iberian peninsula. Remote Sens 8(4):287

    Article  Google Scholar 

  • Shokoohi A, Morovati R (2015) Basinwide comparison of RDI and SPI within an IWRM framework. Water Resour Manag 29(6):2011–2026

    Article  Google Scholar 

  • Sims AP, Raman S (2002) Adopting drought indices for estimating soil moisture: a North Carolina case study. Geophys Res Lett 29(8):1183. https://doi.org/10.1029/2001GL013343

    Article  Google Scholar 

  • Sivakumar M, Stone R, Sentelhas PC, Svoboda M, Omondi P, Sarkar J, Wardlow B (2011) Agricultural drought indices: summary and recommendations. In: Sivakumar et al (eds) Agricultural drought indices proceedings of an expert meeting. 2–4 June 2010. World Meteorological Organization, Murcia, pp 172–197

    Google Scholar 

  • Smith M (1992) CROPWAT—a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper 46. Rome, Italy

  • Sohrabi MM, Ryu JH, Abatzoglou J, Tracy J (2015) Development of soil moisture drought index to characterize droughts. J Hydrol Eng 20(11):04015025

    Article  Google Scholar 

  • Stamm GG (1967) Problems and procedures in determining water supply requirements for irrigation projects. In: Hagan et al. (eds) Irrigation of agricultural lands. Agronomy Monograph 11, American Society of Agronomy, Madison pp 771–784

  • Steduto P, Hsiao TC, Fereres E, Raes D (2012) Crop yield response to water. FAO Irrigation and Drainage paper No 66, Rome

  • Teklay G, Ayana M (2014) Evaluation of irrigation water pricing systems on water productivity in Awash River basin, Ethiopia. J Environ Earth Sci 4(7):70–76

    Google Scholar 

  • Teuling AJ, Van Loon AF, Seneviratne SI, Lehner I, Aubinet M, Heinesch B, Bernhofer C, Grünwald T, Prasse H, Spank U (2013) Evapotranspiration amplifies European summer drought. Geophys Res Lett 40(10):2071–2075

    Article  Google Scholar 

  • Thom HCS (1958) A note on the gamma distribution. Mon Weather Rev 86:117–122

    Article  Google Scholar 

  • Thom HCS (1966) Some methods of climatological analysis. World Meteorological Organization, Technical Note No. 81, WMO-No-199, Geneva, Switzerland

  • Tigkas D (2008) Drought characterisation and monitoring in regions of Greece. Eur Water 23-24:29–39

    Google Scholar 

  • Tigkas D, Tsakiris G (2015) Early estimation of drought impacts on rainfed wheat yield in Mediterranean climate. Environ Process 2(1):97–114

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2012) Drought and climatic change impact on streamflow in small watersheds. Sci Total Environ 440:33–41

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inf 8(3):697–709

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2017) An enhanced effective reconnaissance drought index for the characterisation of agricultural drought. Environ Process 4(suppl 1):137–148. https://doi.org/10.1007/s40710-017-0219-x

    Article  Google Scholar 

  • Tsakiris G, Tigkas D (2007) Drought risk in agriculture in Mediterranean regions. Case study: eastern Crete. In: Rossi et al (eds) Methods and tools for drought analysis and management. Springer, Netherlands, pp 399–414

    Chapter  Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18(1):1–12

    Article  Google Scholar 

  • Tsakiris G, Loukas A, Pangalou D, Vangelis H, Tigkas D, Rossi G, Cancelliere A (2007a) Drought characterisation. In: Iglesias A et al (eds) Drought management guidelines technical annex. Options Méditerranéennes, series B, no. 58, Zaragoza, Spain, pp 85–102

  • Tsakiris G, Pangalou D, Vangelis H (2007b) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833

    Article  Google Scholar 

  • Tsakiris G, Nalbantis I, Vangelis H, Verbeiren B, Huysmans M, Tychon B, Jacquemin I, Canters F, Vanderhaegen S, Engelen G, Poelmans L, de Becker P, Batelaan O (2013) A system-based paradigm of drought analysis for operational management. Water Resour Manag 27(15):5281–5297

    Article  Google Scholar 

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • USDA SCS (1970) Irrigation water requirements. United States Department of Agriculture, soil conservation service, tech. Rel. No 21, (rev. 1970), 88p

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index—SPEI. J Clim 23:1696–1718

    Article  Google Scholar 

  • Wegren SK (2011) Food security and Russia’s 2010 drought. Eurasian Geogr Econ 52(1):140–156

    Article  Google Scholar 

  • Wilhite DA, Buchanan-Smith M (2005) Drought as hazard: understanding the natural and social context. In: Wilhite DA (ed) Drought and water crises: science, technology and management issues. CRC Press, Boca Raton

    Chapter  Google Scholar 

  • WMO (World Meteorological Organization) (2012) Standardized precipitation index user guide. In: Svoboda M, Hayes M, Wood D (eds) WMO-No. 1090, Geneva

  • WMO and GWP (World Meteorological Organization and Global Water Partnership) (2016) Handbook of drought indicators and indices In: Svoboda M, Fuchs BA (eds) Integrated drought management Programme (IDMP). Integrated drought management tools and guidelines series 2, Geneva

  • Wu H, Wilhite DA (2004) An operational agricultural drought risk assessment model for Nebraska, USA. Nat Hazards 33(1):1–21

    Article  Google Scholar 

  • Yildirak K, Selcuk-Kestel AS (2015) Adjusting SPI for crop specific agricultural drought. Environ Ecol Stat 22(4):681–691

    Article  Google Scholar 

  • Zarch MAA, Sivakumar B, Sharma A (2015) Droughts in a warming climate: a global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI). J Hydrol 526:183–195

    Article  Google Scholar 

  • Zhang Q, Zhang J, Wang C (2017) Risk assessment of drought disaster in typical area of corn cultivation in China. Theor Appl Climatol 128(3–4):533–540

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Tigkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigkas, D., Vangelis, H. & Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor Appl Climatol 135, 1435–1447 (2019). https://doi.org/10.1007/s00704-018-2451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2451-3

Navigation