Skip to main content

Advertisement

Log in

A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Acero FJ, García JA, Gallego MC (2011) Peaks-over-threshold study of trends in extreme rainfall over the Iberian Peninsula. J Clim 24(4):1089–1105

    Article  Google Scholar 

  • Anagnostopoulou C, Tolika K (2012) Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theor Appl Climatol 107(3–4):479–489. https://doi.org/10.1007/s00704-011-0487-8

    Article  Google Scholar 

  • Beguería S (2005) Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. J Hydrol 303:215–2309

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Nanni T (2001) Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int J Climatol 21:861–871

    Article  Google Scholar 

  • Boudevillain B, Argence S, Claud C, Ducrocq V, Joly B et al (2009) Projet Cyprim, partie I: Cyclogenèses et précipitations intenses en région méditerranéenne: origines et caractéristiques (in French). La Météorologie 66:18–28

    Article  Google Scholar 

  • Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (2008) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands. US Climate Change Science Program and Subcommittee on Global Change Research, Department of Commerce, NOAA National Climatic Data Center. Washington, DC)

  • Climate Change Science Program CCSP (2008) Weather and climate extremes in a changing climate regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. In: Goverments CCSP (2008)

    Google Scholar 

  • Coelho CAS, Ferro CAT, Stephenson DB, Steinskog DJ (2007) Methods for exploring spatial and temporal variability of extreme events in climate data. J Clim 21:2072–2092

    Article  Google Scholar 

  • Coles S, Tawn J (2005) Bayesian modelling of extreme surges on the UK east coast. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363(1831):1387–1406

    Article  Google Scholar 

  • Coles S, Dixon MJ (1999) Likelihood-based inference for extreme value models. Extremes 2(1):5–23

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer Series in Statistics, London

    Book  Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840. https://doi.org/10.1198/016214506000000780

    Article  Google Scholar 

  • Cullen AC, Frey HC (1999) Probabilistic techniques in exposure assessment. Plenum Press, New York

    Google Scholar 

  • De Valk C (1993) Estimation of marginals from measurements and hindcast data. WL|Delft Hydraulics, Delft, The Netherlands, Report H1700

  • Debusho LK (2016) Bayesian modelling of summer daily maximum temperature data. Proceedings of the 4th International Conference on Mathematical, Computational and Statistical Sciences (MCSS '16), Barcelona: 126–133. ISBN: 978-1-61804-367-2

  • Dyrrdal AV, Lenkoski A, Thorarinsdottir TL, Stordal F (2015) Bayesian hierarchical modeling of extreme hourly precipitation in Norway. Environmetrics 26(2):89–106. https://doi.org/10.1002/env.2301

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3)

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins WJ, ... Forest C (2013) Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013, 5:741–866

  • Furió D, Meneu V (2011) Analysis of extreme temperatures for four sites across Peninsular Spain. Theor Appl Climatol 104:83–99

    Article  Google Scholar 

  • García JA, Serrano A, Gallego MC (2002) A spectral analysis of Iberian Peninsula monthly rainfall. Theoretical Applied Climatology 71:77–95

    Article  Google Scholar 

  • Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Chang 57(1–2):27–42. https://doi.org/10.1016/j.gloplacha.2006.11.012

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37(7–8):1551–1564. https://doi.org/10.1007/s00382-010-0928-6

    Article  Google Scholar 

  • Hertig E, Seubert S, Jacobeit J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazards Earth Syst Sci 10(10):2039–2050. https://doi.org/10.5194/nhess-10-2039-2010

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, New York

    Book  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B Methodol 52:105–124

    Google Scholar 

  • Hundecha Y, Bardossy A (2005) Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int J Climatol 25:1189–1202

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency and intensity in the United States. Bull Am Meteorol Soc 79:231–241

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J Clim 13:3760–3788

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kioutsioukis I, Melas D, Zerefos C (2010) Statistical assessment of changes in climate extremes over Greece (1955-2002). Int J Climatol 30(11):1723–1737. https://doi.org/10.1002/joc.2030

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16(22):3665–3680

    Article  Google Scholar 

  • Klein Tank, A.M.G. et al. (38 co-authors) (2002) Daily dataset of 20th century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22: 1441–1453

  • Kotz S, Nadarajah S (1999) Extreme values distribution, theory and applications. Imperial College Press, London

    Google Scholar 

  • Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37(4). L04802 https://doi.org/10.1029/2009GL041841

  • Kyselý J (2009) Trends in heavy precipitation in the Czech Republic over 1961–2005. Int J Climatol 29(12):1745–1758. https://doi.org/10.1002/joc.1784

  • Kyselý J (2010) Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data. Theor Appl Climatol 101(3):345–361. https://doi.org/10.1007/s00704-009-0190-1

    Article  Google Scholar 

  • Laurent C, Parey S (2007) Estimation of 100-year-return-period temperatures in France in a non-stationary climate: results from observations and IPCC scenarios. Glob Planet Chang 57(1–2):177–188. https://doi.org/10.1016/j.gloplacha.2006.11.008

    Article  Google Scholar 

  • Lee SH, Maeng SJ (2003) Frequency analysis of extreme rainfall using L-moment. Irrig Drain 52(3):219–230. https://doi.org/10.1002/ird.090

    Article  Google Scholar 

  • Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158

    Article  Google Scholar 

  • Lipton J, Shaw WD, Holmes J, Patterson A (1995) Short communication: selecting input distributions for use in Monte Carlo simulations. Regul Toxicol Pharmacol 21(1):192–198

    Article  Google Scholar 

  • Maheras P, Flocas AH, Patrikas I, Anagnostopoulou C (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130

    Article  Google Scholar 

  • Maheras P, Patrikas I, Karacostas T, Anagnostopoulou C (2000) Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theor Appl Climatol 67(3–4):205–223

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744. https://doi.org/10.1029/1999WR900330

    Article  Google Scholar 

  • Mitchell JFB, Manabe S, Meleshko V, Tokioka T (1990) Equilibrium climate change and its implications for the future. In: Houghton, JL, Jenkins GJ, Ephraums JJ. (eds.) Climate Change. The IPCC Scientific Assessment. Contribution of Working Group 1 to the First Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 137–164

  • Naveau P, Guillou A, Cooley D, Diebolt J (2009) Modelling pairwise dependence of maxima in space. Biometrika 96:1–17

    Article  Google Scholar 

  • Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys Res Lett 33(10):2–5. https://doi.org/10.1029/2005GL024251

    Article  Google Scholar 

  • Roth M, Buishand TA, Jongbloed G, Klein Tank AMG, van Zanten JH (2014) Projections of precipitation extremes based on a regional, non-stationary peaks-over-threshold approach: a case study for the Netherlands and north-western Germany. Weather and Climate Extremes 4:1–10. https://doi.org/10.1016/j.wace.2014.01.001

    Article  Google Scholar 

  • Rowinski PM, Strupczewski WG, Singh VP (2002) A note on the applicability of log-Gumbel and log-logistic probability distributions in hydrological analyses. Hydrol Sci J 47(1):107–122

    Article  Google Scholar 

  • Schär C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432(7017):559–560. https://doi.org/10.1038/432559a

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et al (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

  • Tolika K, Maheras P, Pytharoulis I, Anagnostopoulou C (2013) The anomalous low and high temperatures of 2012 over Greece: an explanation from a meteorological and climatological perspective. Natural Hazards and Earth System Sciences Discussions 1(5):4871–4890

    Article  Google Scholar 

  • Tompkins H (2002) Climate change and extreme weather events: is there a connection? Cicerone 3:1–5. CICERO from the internship program International Institute of Sustainable Development (IISD)

  • Trigo I, Davies T, Bigg G (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696

    Article  Google Scholar 

  • Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Charactirisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10(5):1037–1050

    Article  Google Scholar 

  • Van den Brink HW, Können GP, Opsteegh JD (2005) Uncertainties in extreme surge level estimates from observational records. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363(1831):1377–1386

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Christopher Simmons for proofreading this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Lazoglou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazoglou, G., Anagnostopoulou, C., Tolika, K. et al. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region. Theor Appl Climatol 136, 99–117 (2019). https://doi.org/10.1007/s00704-018-2467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2467-8

Navigation