Skip to main content
Log in

Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This paper discusses the development of catalytic (Pt, Pd) hydrogenation in high-pressure CO2 to convert limonene into valuable chemicals. It was noticed that varying the catalyst results in product regioselectivity. Platinum as catalyst favours the formation of p-menthane stereoisomers in equimolar quantities whereas palladium as catalyst furnishes trans-p-menthane and cis-p-menthane in 2:1 ratio. These results are in agreement with hydrogenation mechanisms for Pt- and Pd-catalysed reactions. Platinum is a more active catalyst than palladium, but higher activity results in lower chemical stability of the catalyst. Palladium as catalyst usually catalyses limonene isomerisation in the first stage of the process. Pressure tuning of the processes affects termination of the reaction. The flow rate of the reaction mixture through the stationary catalyst bed affects the composition of products; partially hydrogenated limonene is obtained at low flow rates and completely hydrogenated products at high flow rates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cole-Hamilton DJ (2006) Adv Synth Catal 348:1341

    Article  CAS  Google Scholar 

  2. Brunner G (1994) Gas extraction. Steinkopff and Springer, New York

    Google Scholar 

  3. Tacke T, Wieland S, Panster P (1996) In: von Rohr R, Trepp Ch (eds) High-pressure chemical engineering. Elsevier, New York

    Google Scholar 

  4. Hitzler G, Smail FR, Ross SK, Poliakoff M (1982) Org Process Res Dev 2:137

    Article  Google Scholar 

  5. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) AIChE J 41:723

    Article  Google Scholar 

  6. Nunes da Ponte M (2008) J Supercrit Fluids 47:344

    Article  CAS  Google Scholar 

  7. Solinas M, Pfaltz A, Cozzi PG, Leitner W (2004) J Am Chem Soc 126:16142

    Article  CAS  Google Scholar 

  8. Wandeler R, Kunzle N, Schneider MS, Mallat T, Baiker A (2001) Chem Commun 673

  9. Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Adv Synth Catal 348:1605

    Article  CAS  Google Scholar 

  10. Ipat’ev V, Balachinskii GJ (1912) Russ Phys Chem Soc 43:1754

    Google Scholar 

  11. Albert RM, Traynor SG (1989) In: Zinkel DF, Russel J (eds) Naval stores-production, chemistry and utilization. Pulp Chemical Association, New York

    Google Scholar 

  12. Akgun M, Akgun NA, Dincer S (1999) J Supercrit Fluids 15:117

    Article  CAS  Google Scholar 

  13. Matos HA, Gomes de Azevedo EJS, Simões PC, Carrondo MT, Nunes da Ponte M (1989) Fluid Phase Equilib 52:357

    Article  CAS  Google Scholar 

  14. Fonseca J, Simões PC, Nunes da Ponte M (2003) J Supercrit Fluids 25:7

    Article  CAS  Google Scholar 

  15. Budich M (1999) Ph.D. Thesis, Technische Universität Hamburg-Harburg, Germany

  16. Wie M, Musie GT, Busch DH, Subramanian BJ (2002) J Am Chem Soc 124:2513

    Article  CAS  Google Scholar 

  17. Burgener M, Furrer R, Mallat T, Baiker A (2004) Appl Catal A 268:1

    Article  CAS  Google Scholar 

  18. Chatterjee M, Chatterjee A, Ikushima Y (2004) Green Chem 6:114

    Article  CAS  Google Scholar 

  19. Liu R, Zhao F, Fujita S, Arai M (2007) Appl Catal A 316:127

    Article  CAS  Google Scholar 

  20. Milewska A, Banet Osuna AM, Fonseca IM, Nunes da Ponte M (2005) Green Chem 7:726

    Article  CAS  Google Scholar 

  21. Chouchi D, Gourgouillon D, Courel M, Vital J, Nunes da Ponte M (2001) Ind Eng Chem Res 40:2551

    Article  CAS  Google Scholar 

  22. Bogel-Łukasik E, Fonseca I, Bogel-Łukasik R, Tarasenko YA, Nunes da Ponte M, Paiva A, Brunner G (2007) Green Chem 9:427

    Article  CAS  Google Scholar 

  23. Bogel-Łukasik E, Bogel-Łukasik R, Kriaa K, Fonseca I, Nunes da Ponte M (2008) J Supercrit Fluids 45:225

    Article  CAS  Google Scholar 

  24. Bogel-Łukasik E, Bogel-Łukasik R, Nunes da Ponte M (2009) Ind Eng Chem Res 48:7060

    Article  CAS  Google Scholar 

  25. Minder B, Mallat T, Pickel KH, Steiner K, Baiker A (1995) Catal Lett 34:1

    Article  CAS  Google Scholar 

  26. Leitner W (2004) Pure Appl Chem 76:635

    Article  CAS  Google Scholar 

  27. Horiuti I, Polanyi M (1934) Trans Faraday Soc 30:1164

    Article  Google Scholar 

  28. Augustine RL, Yaghmaie F, van Peppen JF (1984) J Org Chem 49:1865

    Article  CAS  Google Scholar 

  29. Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes FE (2001) Chem Eng Sci 56:1363

    Article  CAS  Google Scholar 

  30. Ichikawa S, Tada M, Iwasawa Y, Ikariya T (2005) Chem Commun 924

  31. Singh UK, Vannice MA (2000) J Catal 191:165

    Article  CAS  Google Scholar 

  32. Carter JL, Sinfelt JH (1978) US Pat. 4088603

  33. Trost BM, Strege PE, Weber L, Fullerton TJ, Dietsche TJ (1978) J Am Chem Soc 100:3407

    Article  CAS  Google Scholar 

  34. Grau RJ, Zgolicz PD, Gutierrez C, Taher HA (1999) J Mol Catal A Chem 148:203

    Article  CAS  Google Scholar 

  35. Gault FG, Rooney JJ, Kemball C (1962) J Catal 1:255

    Article  CAS  Google Scholar 

  36. Stolle A, Brauns C, Nuchter M, Ondruschka B, Bonrath W, Findeisen M (2006) Eur J Org Chem 3317

  37. Siegel S, Dmuchovsky B (1962) J Am Chem Soc 84:3132

    Article  CAS  Google Scholar 

  38. Tarasenko YA, Kopyl SA, Lapko VF, Lysenko AA, Tomizuka I (2002) Electrochemistry 70:316

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission in the framework of the Marie Curie Research Training Network Supergreenchem (EC contract no.: MRTN-CT-2004-504005) and by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) through grants SFRH/BD/26356/2006 and SFRH/BPD/34577/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Bogel-Łukasik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogel-Łukasik, E., Bogel-Łukasik, R. & da Ponte, M.N. Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh Chem 140, 1361–1369 (2009). https://doi.org/10.1007/s00706-009-0196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0196-5

Keywords

Navigation