Skip to main content
Log in

Degradation of atrazine by Fenton and modified Fenton reactions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

For 50 years, farmers around the world have relied on the herbicide atrazine—one of the triazine family of herbicides—to fight weeds in corn, grain sorghum, sugar cane, and other crops. Although prohibited in the European Union because of widespread contamination of waterways and drinking water supplies, it is still one of the most widely used herbicides in the world. Atrazine and some of its degradation products are among the most commonly found xenobiotics in groundwater and soils in the world. It is also an endocrine disruptor that causes abnormal reproductive development and immune suppression in wildlife. The purpose of this study was to identify the degradation products of atrazine. Fenton reaction treatment, a hydroxyl radical oxidation process recently developed for the degradation of aqueous pesticide waste, was applied to the degradation of atrazine. Classical and modified Fenton reactions have been used as Advanced Oxidation Process treatment methods. A HPLC method was developed and optimized for the identification of resulting degradation products. In general, very good atrazine degradation efficiencies were achieved by both of the methods used. The degradation products, such as oxalic acid, urea, formic acid, acetic acid, and acetone, were identified by HPLC with a photodiode array detector.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hesketh N, Jones NM, Tipping E (1996) Anal Chim Acta 327:191

    Article  CAS  Google Scholar 

  2. Claver A, Ormad P, Rodriguez L, Ovelleiro JL (2006) Chemosphere 64:1437

    Article  CAS  Google Scholar 

  3. Singh N, Megharaj M, Kookana SR, Naidu R (2004) Chemosphere 56:257

    Article  CAS  Google Scholar 

  4. Abarikwu OS, Adesiyan AC, Oyejola OT, Oyeyemi OM, Farombi OE (2009) Fertil Steril 91:S8

    Article  Google Scholar 

  5. Hiller E, Krascsenits Z, Kútnik P, Bartaľ M (2004) Geochémia. Dionyz Stur, Bratislava

  6. Maleki N, Absalan G, Safavi A, Farjami E (2007) Anal Chim Acta 581:37

    Article  CAS  Google Scholar 

  7. Kesari R, Gupta VK (1998) Talanta 47:1085

    Article  CAS  Google Scholar 

  8. Wulfeck-Kleier KA, Ybarra MD, Speth TF, Magnuson ML (2010) J Chromatogr A 1217:676

    Google Scholar 

  9. Min G, Wang S, Zhu H, Fang G, Zhang Y (2008) Sci Total Environ 396:79

    Article  CAS  Google Scholar 

  10. Ahel M, Evans KM, Fileman TW, Mantoura RFC (1992) Anal Chim Acta 268:195

    Article  CAS  Google Scholar 

  11. Zhoua Q, Xiao J, Wang W, Liu G, Shi Q, Wang J (2006) Talanta 68:1309

    Article  Google Scholar 

  12. Katsumata H, Kaneco S, Suzuki T, Ohta K (2006) Anal Chim Acta 577:214

    Article  CAS  Google Scholar 

  13. Bohuss I, Bozóki J, Barkács K, Záray G (2003) Microchem J 74:165

    Article  CAS  Google Scholar 

  14. Tomkins BA, Ilgner RH (2002) J Chromatogr A 972:183

    Google Scholar 

  15. Luciana dos Santos BO, Abate G, Masini JC (2004) Talanta 62:667

    Article  Google Scholar 

  16. Luciana dos Santos BO, Silva MSP, Masini JC (2005) Anal Chim Acta 528:21

    Article  Google Scholar 

  17. Tamrakar U, Mathew SB, Gupta VK, Pillai AK (2009) J Anal Chem 64:386

    Article  CAS  Google Scholar 

  18. Wang XJ, Song Y, Mai JS (2008) J Hazard Mater 160:344

    Article  CAS  Google Scholar 

  19. Veiseh O, Kievit MF, Gunn WJ, Ratner DB, Zhang M (2009) Biomaterials 30:649

    Article  CAS  Google Scholar 

  20. Kassinos D, Varnava N, Michael C, Piera P (2009) Chemosphere 74:866

    Article  CAS  Google Scholar 

  21. Chan HK, Chu W (2005) J Hazard Mater 115:227

    Article  Google Scholar 

  22. Zhanqi G, Shaogui Y, Na T, Cheng S (2007) J Hazard Mater 145:424

    Article  Google Scholar 

  23. Farré MJ, Franch MI, Malato S, Ayllón JA, Peral J, Doménech X (2005) Chemosphere 58:1127

    Article  Google Scholar 

  24. Badawy MI, Ghaly MY, Gad-Alleh TA (2006) Desalination 194:166

    Article  CAS  Google Scholar 

  25. Chu W, Chan HK, Kwan YC, Choi YK (2007) Chemosphere 67:755

    Article  CAS  Google Scholar 

  26. Balci B, Oturan N, Cherrier R, Oturan AM (2009) Water Res 43:1924

    Article  CAS  Google Scholar 

  27. Kim G, Jeong W, Choe S (2008) J Hazard Mater 155:502

    Article  CAS  Google Scholar 

  28. Bandala E, Domínguez Z, Rivas F, Gelover S (2007) J Environ Sci Health B 42:21

    Article  CAS  Google Scholar 

  29. Prousek J, Palacková E, Priesolová S, Marková L, Alevová A (2007) Sep Sci Technol 42:1505

    Article  CAS  Google Scholar 

  30. Devi GL, Kumar GS, Reddy MK, Munikrishnappa C (2009) J Hazard Mater 164:459

    Article  Google Scholar 

  31. Prousek J, Priesolová S (2002) Chem Listy 96:893

    CAS  Google Scholar 

  32. Russell GA (1957) J Am Chem Soc 79:3871

    Article  CAS  Google Scholar 

  33. Rebelo SLH, Pereira MM, Monsanto PV, Burrows HD (2009) J Mol Catal A: Chem 297:35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (VEGA grants no. 1/0390/09, 1/0866/08, and 1/0182/11) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L’ubomír Švorc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackul’ak, T., Prousek, J. & Švorc, L. Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh Chem 142, 561–567 (2011). https://doi.org/10.1007/s00706-011-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0504-8

Keywords

Navigation