Skip to main content
Log in

Self-supporting hierarchically organized silicon networks via magnesiothermic reduction

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using a magnesiothermic reduction process, the successful conversion of hierarchically organized meso/macroporous silica monoliths to self-supporting macroporous silicon networks comprising interparticle mesoporosity has been demonstrated. By careful variation of reaction time and temperature, the final network structure can be controlled to a large degree. Scanning and transmission electron microscopy images indicate that the cellular silicon structure is built up from aggregated 1–15 nm sized crystalline silicon particles aggregated to struts that form macropores of approximately 2 µm diameter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weitkamp J, Sing KSW, Schüth F (2002) Handbook of porous solids. Wiley-VCH, Weinheim

    Google Scholar 

  2. Triantafillidis C, Elsässer MS, Hüsing N (2013) Chem Soc Rev 42:3833

    Article  CAS  Google Scholar 

  3. Bang BM, Lee J-I, Kim H, Cho J, Park S (2012) Adv Energy Mater 2:878

    Article  CAS  Google Scholar 

  4. Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR (1997) Science 278:840

  5. Canham L (2014) Porous Silicon Formation by Porous Silica Reduction. In: Canham L (ed), Handbook of Porous Silicon. Springer International Publishing, p 1

  6. Zhu J, Gladden C, Liu N, Cui Y, Zhang X (2012) Phys Chem Chem Phys 15:440

    Article  Google Scholar 

  7. Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage KH (2007) Nature 446:172

    Article  CAS  Google Scholar 

  8. Zemnukhova L, Panasenko A, Fedorishcheva G, Ziatdinov A, Polyakova N, Kuryavyi V (2012) Inorg Mater 48:971

    Article  CAS  Google Scholar 

  9. Liu N, Huo K, McDowell MT, Zhao J, Cui Y (2013) Sci Rep 3:1919

    Google Scholar 

  10. Batchelor L, Loni A, Canham LT, Hasan M, Coffer JL (2012) Silicon 4:259

    Article  CAS  Google Scholar 

  11. Dasog M, Yang Z, Veinot JGC (2012) CrystEngComm 14:7576

    Article  CAS  Google Scholar 

  12. Chen K, Bao ZH, Shen J, Wu GM, Zhou B, Sandhage KH (2012) J Mater Chem 22:16196

    Article  CAS  Google Scholar 

  13. Zhang Y, Huang J (2011) J Mater Chem 21:7161

    Article  CAS  Google Scholar 

  14. Dickerson M, Naik R, Sarosi P, Agarwal G, Stone M, Sandhage K (2005) J Nanosci Nanotechnol 5:63

    Article  CAS  Google Scholar 

  15. Richman EK, Kang CB, Brezesinski T, Tolbert SH (2008) Nano Lett 8:3075

    Article  CAS  Google Scholar 

  16. Fang J, Kang CB, Huang Y, Tolbert SH, Pilon L (2012) J Phys Chem C 116:12926

    Article  CAS  Google Scholar 

  17. Ibisate M, Golmayo D, López C (2009) Adv Mater 21:2899

    Article  CAS  Google Scholar 

  18. Pallavidino L, Liscidini M, Virga A, Chiodoni A, Descrovi E, Cos J, Andreani LC, Pirri CF, Geobaldo F, Giorgis F (2011) Opt Mater 33:563

    Article  CAS  Google Scholar 

  19. Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee JY (2012) Angew Chem Int Ed 51:2409

    Article  CAS  Google Scholar 

  20. Liu MP, Li CH, Du HB, You XZ (2012) Chem Commun 48:4950

    Article  CAS  Google Scholar 

  21. Chen W, Fan Z, Dhanabalan A, Chen C, Wang C (2011) J Electrochem Soc 158:A1055

    Article  CAS  Google Scholar 

  22. Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G (2011) Microporous Mesoporous Mater 142:194

    Article  CAS  Google Scholar 

  23. Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z (2011) Adv Energy Mater 1:1036

    Article  CAS  Google Scholar 

  24. Tao HC, Huang M, Fan LZ, Qu X (2012) Solid State Ionics 220:1

    Article  CAS  Google Scholar 

  25. Larbi KK, Barati M, McLean A (2011) Can Metall Q 50:341

    Article  CAS  Google Scholar 

  26. Banerjee HD, Sen S, Acharya HN (1982) Mater Sci Eng 52:173

    Article  CAS  Google Scholar 

  27. Barati M, Sarder S, McLean A, Roy R (2011) J Non-Cryst Solids 357:18

    Article  CAS  Google Scholar 

  28. Swatsitang E, Krochai M (2009) J Met Mater Miner 19:91

    Google Scholar 

  29. Bao Z, Ernst EM, Yoo S, Sandhage KH (2009) Adv Mater 21:474

    Article  CAS  Google Scholar 

  30. Hai N, Grigoriants I, Gedanken A (2009) J Phys Chem C 113:10521

    Article  CAS  Google Scholar 

  31. Shepherd RF, Panda P, Bao Z, Sandhage KH, Hatton TA, Lewis JA, Doyle PS (2008) Adv Mater 20:4734

    Article  CAS  Google Scholar 

  32. Winnacker K, Küchler L, Dittmeyer R (2004) Chemische Technik: Methodische Grundlagen, vol 1, 5th edn. Wiley-VCH, Weinheim

  33. Wong DP, Lien H-T, Chen Y-T, Chen K-H, Chen L-C (2012) Green Chem 14:896

    Article  CAS  Google Scholar 

  34. Won CW, Nersisyan HH, Shin CY, Lee JH (2009) Microporous Mesoporous Mater 126:166

    Article  CAS  Google Scholar 

  35. Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N (2005) Chem Mater 17:4262

    Article  CAS  Google Scholar 

  36. Hartmann S, Brandhuber D, Hüsing N (2007) Acc Chem Res 40:885

    Article  CAS  Google Scholar 

  37. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Bundesministerium für Bildung und Forschung (BMBF) (project “KoLiWIn”/03SF0343C). Dr. J. Holzbock and M. Rapp are gratefully acknowledged for helpful discussions. We thank S. Blessing for XRD analysis (Ulm University) and Mubera Suljic for the nitrogen sorption measurements. We are also grateful to the Central Facility for Electron Microscopy (Ulm University) for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Hüsing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waitzinger, M., Elsaesser, M.S., Berger, R.J.F. et al. Self-supporting hierarchically organized silicon networks via magnesiothermic reduction. Monatsh Chem 147, 269–278 (2016). https://doi.org/10.1007/s00706-015-1611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1611-8

Keywords

Navigation