Skip to main content
Log in

Stochastic averaging for a class of single degree of freedom systems with combined Gaussian noises

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We develop the stochastic averaging method to investigate the asymptotic stationary solution and the stochastic bifurcations of a class of single degree of freedom system with combined Gaussian white and colored noises, and to derive the Fokker–Planck–Kolmogorov (FPK) equations. The general stationary solutions will be obtained analytically under some suitable conditions. Theoretically, a general algebraic expression of the stationary probability density function of amplitude for the dynamical system is presented to consider the influences of correlation time of the noise and the noise intensity on stochastic bifurcations. Then, an example is given to illustrate the averaging method, and the effectiveness of the averaging method is verified via comparing the analytical results with those from Monte Carlo simulation. Finally, stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution. It indicates that system parameters, noise intensity, and noise correlation time can be treated as bifurcation parameters, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fox R.F.: Uniform convergence to an effective Fokker–Planck equation for weakly colored noise. Phys. Rev. A 34, 4525–4527 (1986)

    Article  MathSciNet  Google Scholar 

  2. Jung P., Hanggi P.: Dynamical systems: a unified colored-noise approximation. Phys. Rev. A 35, 4464–4466 (1987)

    Article  Google Scholar 

  3. Hu, G.: Stochastic Forces and Nonlinear Systems. Shanghai: Shanghai Scientific and Technological Education Publishing House, in Chinese (1994)

  4. Wu D.J., Cao L., Ke S.Z.: Bistable kinetic model driven by correlated noises: steady-state analysis. Phys. Rev. E 50, 2496–2502 (1994)

    Article  Google Scholar 

  5. Cao L., Wu D.J., Ke S.Z.: Bistable kinetic model driven by correlated noises: unified colored-noise approximation. Phys. Rev. E 52, 3228–3231 (1995)

    Article  Google Scholar 

  6. Jia Y., Li J.R.: Steady-state analysis of a bistable system with additive and multiplicative noises. Phys. Rev. E 53, 5786–5792 (1996)

    Article  Google Scholar 

  7. Namachchivaya N.S., Tien W.M.: Bifurcation behavior of nonlinear pipes conveying pulsating flow. J. Fluids Struct. 3, 609 (1989)

    Article  MATH  Google Scholar 

  8. Namachchivaya N.S.: Stochastic bifurcation. Appl. Math. Comput. 38, 101 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Billings L., Schwartz I., Morgan D., Bollt E., Meucci R., Allaria E.: Stochastic bifurcation in a driven laser system: experiment and theory. Phys. Rev. E 70, 026220 (2004)

    Article  Google Scholar 

  10. Xu W., He Q., Fang T., Rong H.: Stochastic bifurcation in doffing system subject to harmonic excitation and in presence of random noise. Int. J. Non-Linear Mech. 39, 1473 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiarella C., He X.Z., Wang D., Zheng M.: The stochastic bifurcation behavior of speculative financial markets. Phys. A 387, 3837 (2008)

    Article  MathSciNet  Google Scholar 

  12. Nakao H., Teramae J.N., Goldobin D.S., Kuramoto Y.: Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise. Chaos 20, 033126 (2010)

    Article  MathSciNet  Google Scholar 

  13. Arnold L.: Random Dynamical Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Xu Y., Gu R.C., Zhang H.Q., Xu W., Duan J.Q.: Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise. Phys. Rev. E 83, 056215 (2011)

    Article  Google Scholar 

  15. Goldobin D.S., Teramae J.N., Nakao H., Ermentrout G.B.: Dynamics of limit-cycle oscillator subject to general noise. Phys. Rev. Lett. 105, 154101 (2010)

    Article  Google Scholar 

  16. Goldobin D.S., Pikovsky A.: Antirelibility of noise-driven neurons. Phys. Rev. E 73, 061906 (2006)

    Article  MathSciNet  Google Scholar 

  17. Holmes P., Rand D.: Phase portraits and bifurcation of the non-linear oscillator. Int. J. Non-linear Mech. 15, 449–458 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guckenheimer J., Holmes P.: Nonlinear Oscillation Dynamical Systems and Bifurcation of Vector Fields. Springer, Berlin (1983)

    Book  Google Scholar 

  19. Goldobin D.S., Pikovsky A.: Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E 71, 045201 (2005)

    Article  MathSciNet  Google Scholar 

  20. Zakharova A., Vadivasova T., Anishchenko V., Koseska A., Kurths J.: Stochastic bifurcations and coherencelike resonance in a self-sustained noisy oscillator. Phys. Rev. E 81, 011106 (2010)

    Article  Google Scholar 

  21. Zhu W.Q.: Recent developments and applications of the stochastic averaging method in random vibration. Appl. Mech. Rev. 49(10S), S72–S80 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Guo, R., Jia, W. et al. Stochastic averaging for a class of single degree of freedom systems with combined Gaussian noises. Acta Mech 225, 2611–2620 (2014). https://doi.org/10.1007/s00707-013-1040-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1040-x

Keywords

Navigation