Skip to main content
Log in

Stiffness degradation of prestressed cable-strut structures observed from variations of lower frequencies

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A great attraction of prestressed cable-strut structures is that the initial prestresses can guarantee the structural stability. However, increasing the prestress level of these structures does not necessarily improve the structural stiffness. Here, we investigate the influence of prestress on the stiffness of prestressed cable-strut structures, whereas potential buckling of compression struts is taken into consideration. Symmetry representation of internal mechanism modes and group theory is introduced for parallel and efficient computations on the lower frequencies, which are associated with the internal mechanisms. Nonlinear static equilibrium and improved group-theoretic analysis on these cable-strut structures are iteratively performed. Numerical results show that there is a nonlinear correlation between the prestress level and stiffness. Importantly, continuous increase in prestress for a structure with compression struts can decrease the lower frequencies, and thus weaken the structural stiffness. The first natural frequency tends to be zero when the prestress is close to the critical buckling force of certain compression struts. The presented method can be used as a reasonable choice for force-finding and health-monitoring of prestressed cable-strut structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, N., Smith, I.: Dynamic behavior and vibration control of a tensegrity structure. Int. J. Solids Struct. 47, 1285–1296 (2010)

    Article  MATH  Google Scholar 

  2. Zhang, L.Y., Li, Y., Cao, Y.P., Feng, X.Q.: Stiffness matrix based form-finding method of tensegrity structures. Eng. Struct. 58, 36–48 (2014)

    Article  Google Scholar 

  3. Guest, S.: The stiffness of prestressed frameworks: a unifying approach. Int. J. Solids Struct. 43, 842–854 (2006)

    Article  MATH  Google Scholar 

  4. Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems. Springer, New York (2009)

    MATH  Google Scholar 

  5. Koohestani, K., Guest, S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50, 2995–3007 (2013)

    Article  Google Scholar 

  6. Koohestani, K.: A computational framework for the form-finding and design of tensegrity structures. Mech. Res. Commun. 54, 41–49 (2013)

    Article  Google Scholar 

  7. Lee, S., Woo, B., Lee, J.: Self-stress design of tensegrity grid structures using genetic algorithm. Int. J. Mech. Sci. 79, 38–46 (2014)

    Article  Google Scholar 

  8. Zhang, P., Kawaguchi, K., Feng, J.: Prismatic tensegrity structures with additional cables: integral symmetric states of self-stress and cable-controlled reconfiguration procedure. Int. J. Solids Struct. 51, 4294–4306 (2014)

    Article  Google Scholar 

  9. Furuya, H.: Concept of deployable tensegrity structures in space application. Int. J. Space Struct. 7, 143–151 (1992)

    Article  Google Scholar 

  10. Ashwear, N., Tamadapu, G., Eriksson, A.: Optimization of modular tensegrity structures for high stiffness and frequency separation requirements. Int. J. Solids Struct. 80, 297–309 (2016)

    Article  Google Scholar 

  11. Masic, M., Skelton, R.E.: Selection of prestress for optimal dynamic/control performance of tensegrity structures. Int. J. Solids Struct. 43, 2110–2125 (2006)

    Article  MATH  Google Scholar 

  12. Moussa, B., Ben, K.N., Pons, J.C.: Evolution of natural frequencies in tensegrity systems: a case study. Int. J. Space Struct. 16, 57–73 (2001)

    Article  Google Scholar 

  13. Wu, M.G., Sasaki, M.: Structural behaviors of an arch stiffened by cables. Eng. Struct. 29, 529–541 (2007)

    Article  Google Scholar 

  14. Ali, N.B.H., Rhode-Barbarigos, L., Albi, A.A.P., Smith, I.F.C.: Design optimization and dynamic analysis of a tensegrity-based footbridge. Eng. Struct. 32, 3650–3659 (2010)

    Article  Google Scholar 

  15. Greschik, G.: Truss beam with tendon diagonals: mechanics and designs. AIAA J. 46, 557–567 (2008)

    Article  Google Scholar 

  16. Hanaor, A.: Double-layer tensegrity grids: static load response. Part II: experimental study. J. Struct. Eng. 117, 1675–1684 (1991)

    Article  Google Scholar 

  17. Ashwear, N., Eriksson, A.: Natural frequencies describe the pre-stress in tensegrity structures. Comput. Struct. 138, 162–171 (2014)

    Article  Google Scholar 

  18. Murtha-Smith, E.: Alternate path analysis of space trusses for progressive collapse. J. Struct. Eng. 114, 1978–1999 (1988)

    Article  Google Scholar 

  19. Kaveh, A., Nikbakht, M.: Buckling load of symmetric plane frames using canonical forms and group theory. Acta Mech. 185, 89–128 (2006)

    Article  MATH  Google Scholar 

  20. Kaveh, A.: Optimal Analysis of Structures by Concepts of Symmetry and Regularity. Springer, New York (2013)

    Book  MATH  Google Scholar 

  21. Kaveh, A., Rahami, H., Nikbakht, M.: Vibration analysis of regular structures by graph products: cable networks. Comput. Struct. 88, 588–601 (2010)

    Article  MATH  Google Scholar 

  22. Kaveh, A., Nikbakht, M.: Analysis of space truss towers using combined symmetry groups and product graphs. Acta Mech. 218, 133–160 (2011)

    Article  MATH  Google Scholar 

  23. Chen, Y., Sareh, P., Feng, J., Sun, Q.: A computational method for automated detection of engineering structures with cyclic symmetries. Comput. Struct. 191, 153–164 (2017)

    Article  Google Scholar 

  24. Chen, Y., Fan, L., Feng, J.: Kinematic of symmetric deployable scissor-hinge structures with integral mechanism mode. Comput. Struct. 191, 140–152 (2017)

    Article  Google Scholar 

  25. Chen, Y., Feng, J.: Generalized eigenvalue analysis of symmetric prestressed structures using group theory. J. Comput. Civ. Eng. ASCE 26, 488–497 (2012)

    Article  Google Scholar 

  26. Beatini, V., Royer-Carfagni, G.: Cable-stiffened foldable elastica for movable structures. Eng. Struct. 56, 126–136 (2013)

    Article  Google Scholar 

  27. Shekastehband, B., Abedi, K.: Collapse behavior of tensegrity systems due to cable rupture. Int. J. Struct. Stabil. Dyn. 13, 496–506 (2013)

    Article  Google Scholar 

  28. Vassilopoulou, I., Gantes, C.J.: Vibration modes and natural frequencies of saddle form cable nets. Comput. Struct. 88, 105–119 (2010)

    Article  Google Scholar 

  29. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  30. Sultan, C.: Stiffness formulations and necessary and sufficient conditions for exponential stability of prestressable structures. Int. J. Solids Struct. 50, 2180–2195 (2013)

    Article  Google Scholar 

  31. Chen, Y., Feng, J.: Group-theoretic method for efficient buckling analysis of prestressed space structures. Acta Mech. 226, 957–973 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaveh, A., Nikbakht, M.: Stability analysis of hyper symmetric skeletal structures using group theory. Acta Mech. 200, 177–197 (2008)

    Article  MATH  Google Scholar 

  33. Kaveh, A., Nikbakht, M.: Improved group-theoretical method for eigenvalue problems of special symmetric structures, using graph theory. Adv. Eng. Softw. 41, 22–31 (2010)

    Article  MATH  Google Scholar 

  34. Calladine, C.R., Pellegrino, S.: First-order infinitesimal mechanisms. Int. J. Solids Struct. 27, 505–515 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, Y., Feng, J., Liu, Y.: A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mech. Mach. Theory 105, 91–107 (2016)

    Article  Google Scholar 

  36. Guest, S.D., Fowler, P.W.: A symmetry-extended mobility rule. Mech. Mach. Theory 40, 1002–1014 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22, 409–428 (1986)

    Article  Google Scholar 

  38. Connelly, R., Fowler, P.W., Guest, S.D., Schulze, B., Whiteley, W.J.: When is a symmetric pin-jointed framework isostatic? Int. J. Solids Struct. 46, 762–773 (2009)

    Article  MATH  Google Scholar 

  39. Chen, Y., Feng, J., Ma, R., Zhang, Y.: Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures. J. Struct. Eng. ASCE 141, 04014240 (2015)

    Article  Google Scholar 

  40. Chen, Y., Feng, J., Zhang, Y.T.: A necessary condition for stability of kinematically indeterminate pin-jointed structures with symmetry. Mech. Res. Commun. 60, 64–73 (2014)

    Article  Google Scholar 

  41. Chen, Y., Feng, J.: Improved symmetry method for the mobility of regular structures using graph products. J. Struct. Eng. ASCE 142, 04016051 (2016)

    Article  Google Scholar 

  42. Zhang, J.Y., Guest, S.D., Ohsaki, M.: Symmetric prismatic tensegrity structures. Part I: configuration and stability. Int. J. Solids Struct. 46, 1–14 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Sun, Q. & Feng, J. Stiffness degradation of prestressed cable-strut structures observed from variations of lower frequencies. Acta Mech 229, 3319–3332 (2018). https://doi.org/10.1007/s00707-018-2167-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2167-6

Navigation