Skip to main content
Log in

Meta-heuristic methods for optimization of truss structures with vibration frequency constraints

  • Review and Perspective in Mechanics
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Vibration frequencies are important and easily attainable parameters, which can be used to observe the dynamic behavior of a structural system. In many cases, it is beneficial to place some restrictions on the natural frequencies of a structure for different purposes. As a well-known example, it is advantageous to constrain the vibration frequencies of a structural system so as to prevent resonance in response to external excitation. Another application is in space structures, which are supposed to operate in zero gravity conditions; constraining natural frequencies is crucial in order to control the dynamic response to different sources of vibration like orbit maintenance maneuvers. Attempting to optimize a weight- or cost-related objective function of a structure, while placing lower and/or upper bounds on its vibration frequencies, gives rise to the well-known problem of structural optimization with frequency constraints. This paper reviews different meta-heuristic optimization techniques utilized to address different examples of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grandhi, R.V.: Structural optimization with frequency constraints—a review. AIAA J. 31(12), 2296–2303 (1993)

    MATH  Google Scholar 

  2. Kaveh, A., Zolghadr, A.: Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints. Eng. Optim. 49(8), 1317–1334 (2017)

    Google Scholar 

  3. Blachut, J., Gajewski, A.: On unimodal and bimodal optimal design of funicular arches. Int. J. Solids Struct. 17(7), 653–657 (1981)

    MATH  Google Scholar 

  4. Olhoff, N., Plaut, R.H.: Bimodal optimization of vibrating shallow arches. Int. J. Solids Struct. 19(6), 553–570 (1983)

    MATH  Google Scholar 

  5. Plaut, R.H., Olhoff, N.: Optimal forms of shallow arches with respect to vibration and stability. J. Struct. Mech. 11, 81–100 (1983)

    Google Scholar 

  6. Plaut, R.H., Johnson, L.W., Parbery, R.: Optimal forms of shallow shells with circular boundary, part 1: maximum fundamental frequency. J. Appl. Mech-T ASME 51, 526–530 (1984)

    MATH  Google Scholar 

  7. Arora, J.S., Haug, E.J., Rim, K.: Optimal design of plane frame. J. Struct. Div. ASCE 101, 2063–2078 (1975)

    Google Scholar 

  8. Brach, R.M.: On the extremal fundamental frequencies of vibrating beams. Int. J. Solids Struct. 4(7), 667–674 (1968)

    MATH  Google Scholar 

  9. Brach, R.M.: On optimal design of vibrating structures. J. Optim. Theory Appl. 11(6), 662–667 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Elwany, M.H.S., Barr, A.D.S.: Minimum weight design of beams in torsional vibration with several frequency constraints. J. Sound Vib. 62(3), 411–425 (1979)

    MATH  Google Scholar 

  11. Kodiyalam, S., Vanderplaats, G.N., Miura, H.: Structural shape optimization with MSC/NASTRAN. Comput. Struct. 40(4), 821–829 (1991)

    MATH  Google Scholar 

  12. Bert, C.W.: Optimal design of a composite-material plate to maximize its fundamental frequency. J. Sound Vib. 50(2), 229–237 (1977)

    MathSciNet  Google Scholar 

  13. Bruch, J.C., Adali, A., Sloss, J.M., Sadek, I.S.: Optimal design and control of a cross-ply laminate for maximum frequency and minimum dynamic response. Comput. Struct. 37(1), 87–94 (1990)

    Google Scholar 

  14. Livine, E., Schmit, L.A., Friedmann, P.P.: Towards integrated multidisciplinary synthesis of actively controlled fiber composite wings. J. Aircr. 27(12), 979–992 (1990)

    Google Scholar 

  15. DeSilva, B.M.E.: Minimum weight design of disks using a frequency constraint. J. Eng. Ind-T ASME 91, 1091–1099 (1969)

    Google Scholar 

  16. DeSilva, B.M.E., Grant, G.N.C.: Optimal frequency-weight computations for a disk. Int. J. Numer. Methods Eng. 9(3), 387–393 (1971)

    Google Scholar 

  17. Canfield, R.A., Grandhi, R.V., Venkayya, V.B.: Optimum design of structures with multiple constraints. AIAA J. 26(1), 78–85 (1988)

    MATH  Google Scholar 

  18. Canfield, R.A., Grandhi, R.V., Venkayya, V.B.: Structural optimization with stiffness and frequency constraints. Mech. Struct. Mach. 17(1), 95–110 (1989)

    Google Scholar 

  19. Grandhi, R.V., Venkayya, V.B.: Optimum design of wing structures with multiple frequency constraints. Finite Elem. Anal. Des. 4, 303–313 (1989)

    MATH  Google Scholar 

  20. Hajela, P., Bloebaum, C.L., Sobieski, J.S.: Application of global sensitivity equations in multidisciplinary aircraft synthesis. J. Aircr. 27(12), 1002–1010 (1990)

    Google Scholar 

  21. Leal, R.P., Mota Scares, C.A.: Mixed elements in the optimal design of plates. J. Struct. Optim. 1(2), 127–136 (1989)

    Google Scholar 

  22. Melnikov, Y.A., Titarenko, S.A.: A new approach to 2-D eigenvalue shape design. Int. J. Numer. Methods Eng. 36(12), 2017–2030 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Patnaik, S.N., Maiti, M.: Optimum design of stiffened structures with constraint on the frequency in the presence of initial stresses. Comput. Methods Appl. Mech. 7, 303–322 (1976)

    MATH  Google Scholar 

  24. Bellagamba, L., Yang, T.Y.: Minimum-mass truss structures with constraints on fundamental natural frequency. AIAA J. 19(11), 1452–1458 (1981)

    Google Scholar 

  25. Nakamura, T., Ohsaki, M.: A natural generation of optimum topology of plane trusses for specified fundamental frequency. Comput. Methods Appl. Mech. 94(1), 113–129 (1992)

    MATH  Google Scholar 

  26. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  27. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan (1995)

  28. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)

    Google Scholar 

  29. Geem, Z.W., Joong, H.K., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  30. Erol, O.K., Eksin, I.: New optimization method: big bang–big crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Google Scholar 

  31. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Forme (2010)

    Google Scholar 

  32. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010)

    MATH  Google Scholar 

  33. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R. (ed.) Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Berlin (2010)

    Google Scholar 

  34. Rao, R.V., Savsani, V.J., Balic, J.: Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44(12), 1447–1462 (2012)

    Google Scholar 

  35. Kaveh, A., Khayatazad, M.: A novel meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012)

    Google Scholar 

  36. Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Google Scholar 

  37. Kaveh, A., Zolghadr, A.: Democratic PSO for truss layout and size optimization with frequency constraints. Comput. Struct. 130, 10–21 (2014)

    Google Scholar 

  38. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Google Scholar 

  39. Sadollah, A., Eskandar, H., Bahreininejad, A., Kim, J.H.: Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Comput. Struct. 149, 1–16 (2015)

    Google Scholar 

  40. Gonçalves, M.S., Lopez, R.H., Miguel, L.F.F.: Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput. Struct. 153, 165–184 (2015)

    Google Scholar 

  41. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Google Scholar 

  42. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  43. Kaveh, A., Zolghadr, A.: Tug of war optimization: a new meta-heuristic algorithm. Int. J. Optim. Civ. Eng. 6(4), 469–493 (2016)

    Google Scholar 

  44. Kaveh, A., Zolghadr, A.: Cyclical parthenogenesis algorithm: a new meta-heuristic algorithm. Asian J. Civ. Eng. 18(5), 673–702 (2017)

    Google Scholar 

  45. Kaveh, A., Ilchi Ghazaan, M.: A new meta-heuristic algorithm: vibrating particles system. Sci. Iran. 24(2), 551–566 (2017)

    Google Scholar 

  46. Pholdee, N., Bureerat, S.: Comparative performance of meta-heuristic algorithms for mass minimization of trusses with dynamic constraints. Adv. Eng. Softw. 75, 1–13 (2014)

    Google Scholar 

  47. Kaveh, A., Zolghadr, A.: Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J. Civ. Eng. 12(4), 487–509 (2011)

    Google Scholar 

  48. Kaveh, A., Zolghadr, A.: Truss optimization with natural frequency constraints using a hybridized CSS–BBBC algorithm with trap recognition capability. Comput. Struct. 102–103, 14–27 (2012)

    Google Scholar 

  49. Lingyun, W., Mei, Z., Guangming, W., Guang, M.: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. J. Comput. Mech. 35(5), 361–368 (2005)

    MATH  Google Scholar 

  50. Reeves, W.T.: Particle systems—a technique for modeling a class of fuzzy objects. ACM Trans. Graph. 2(2), 91–108 (1983)

    Google Scholar 

  51. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd edn. Springer, Basel (2017)

    MATH  Google Scholar 

  52. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(56), 267–283 (2009)

    Google Scholar 

  53. Kaveh, A., Talatahari, S.: Hybrid charged system search and particle swarm optimization for engineering design problems. Eng. Comput. 28(4), 423–440 (2011)

    MATH  Google Scholar 

  54. Kaveh, A., Laknejadi, K.: A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Expert Syst. Appl. 38(12), 15475–15488 (2011)

    Google Scholar 

  55. Fourie, P.C., Groenwold, A.A.: The particle swarm optimization algorithm in size and shape optimization. Struct. Multidiscip. Optim. 23(4), 259–267 (2002)

    Google Scholar 

  56. Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19–20), 1579–1588 (2007)

    Google Scholar 

  57. Jansen, P.W., Perez, R.E.: Constrained structural design optimization via a parallel augmented lagrangian particle swarm optimization approach. Comput. Struct. 89(13–14), 1352–1356 (2011)

    Google Scholar 

  58. Luh, G.C., Lin, C.Y.: Optimal design of truss-structures using particle swarm optimization. Comput. Struct. 89(2324), 2221–2232 (2011)

    Google Scholar 

  59. Zhao, X.: A perturbed particle swarm algorithm for numerical optimization. Appl. Soft. Comput. 10(1), 119–124 (2010)

    Google Scholar 

  60. Zhao, Y., Zub, W., Zeng, H.: A modified particle swarm optimization via particle visual modeling analysis. Comput. Math. Appl. 57(2009), 2022–2029 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–38 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Gomes, M.H.: Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst. Appl. 38, 957–68 (2011)

    Google Scholar 

  63. Kaveh, A., Zolghadr, A.: Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints. Adv. Eng. Softw. 76, 9–30 (2014)

    Google Scholar 

  64. Miguel, L.F.F., Fadel Miguel, L.F.: Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst. Appl. 39, 9458–67 (2012)

    Google Scholar 

  65. Gholizadeh, S., Barzegar, A.: Shape optimization of structures for frequency constraints by sequential harmony search algorithm. Eng. Optim. 45(6), 627–646 (2013)

    MathSciNet  Google Scholar 

  66. Kaveh, A., Javadi, S.M.: Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm. Acta Mech. 225, 1595–1605 (2014)

    MATH  Google Scholar 

  67. Gomes, M.H.: A firefly metaheuristic structural size and shape optimisation with natural frequency constraints. Int. J. Metaheuristics 2(1), 38–55 (2012)

    Google Scholar 

  68. Kaveh, A., Motie Share, M.A., Moslehi, M.: Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech. 224, 85–107 (2013)

    MATH  Google Scholar 

  69. Kaveh, A., Mirzaei, B., Jafarvand, A.: An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables. Appl. Soft. Comput. 28, 400–410 (2015)

    Google Scholar 

  70. Kaveh, A., Talatahari, S.: An enhanced charged system search for configuration optimization using the concept of field of forces. Struct. Multidiscip. Optim. 43(3), 339–351 (2011)

    Google Scholar 

  71. Kaveh, A., Zakian, P.: Enhanced bat algorithm for optimal design of skeletal structures. Asian J. Civ. Eng. 15(2), 179–212 (2014)

    Google Scholar 

  72. Baghlani, A., Makiabadi, M.H.: Teaching-learning-based optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints. Int. J. Sci. Technol. Trans. Civ. Eng. 37(C), 409–421 (2013)

    Google Scholar 

  73. Farshchin, M., Camp, C.V., Maniat, M.: Multi-class teaching-learning-based optimization for truss design with frequency constraints. Eng. Struct. 106, 355–369 (2016)

    Google Scholar 

  74. Kaveh, A., Zolghadr, A.: A new PSRO algorithm for frequency constraint truss shape and sizeoptimization. Struct. Eng. Mech. 52(3), 445–468 (2014)

    Google Scholar 

  75. Kaveh, A., Ilchi Ghazaan, M.: Layout and size optimization of trusses with natural frequency constraints using improved ray optimization. Int. J. Sci. Technol. Trans. Civ. Eng. 39(C), 395–408 (2015)

    Google Scholar 

  76. Kaveh, A., Jafari, L., Farhoudi, N.: Truss optimization with natural frequency constraints using a dolphin echolocation algorithm. Asian J. Civ. Eng. 16(1), 29–46 (2017)

    Google Scholar 

  77. Kaveh, A., Ilchi Ghazaan, M.: Colliding bodies optimization for design problems with continuous and discrete variables. Adv. Eng. Softw. 77, 66–75 (2014)

    Google Scholar 

  78. Kaveh, A., Ilchi Ghazaan, M.: Computer codes for colliding bodies optimization and its enhanced version. Int. J. Optim. Civ. Eng. 4, 321–332 (2014)

    Google Scholar 

  79. Kaveh, A., Mahdavi, V.R.: Colliding bodied optimization for truss optimization with multiple frequency constraints. J. Comput. Civ. Eng. ASCE (2015). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000402

    Article  Google Scholar 

  80. Kaveh, A., Ilchi Ghazaan, M.: Enhanced colliding bodies algorithm for truss optimization with dynamic constraints. J. Comput. Civ. Eng. ASCE (2014). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000445

    Article  MATH  Google Scholar 

  81. Kaveh, A., Zolghadr, A.: Truss shape and size optimization with frequency constraints using tug of war optimization. Asian J. Civ. Eng. 18(2), 311–333 (2017)

    Google Scholar 

  82. Kaveh, A., Ilchi Ghazaan, M.: Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mech. 228(1), 307–322 (2017)

    MathSciNet  Google Scholar 

  83. Khatibinia, M., Naseralavi, S.S.: Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm. J. Sound Vib. 333(24), 6349–6369 (2014)

    Google Scholar 

  84. Kaveh, A., Ilchi Ghazaan, M.: Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints. Adv. Eng. Softw. 79, 137–147 (2015)

    Google Scholar 

  85. Tejani, G.G., Savsani, V.J., Petal, V.K.: Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J. Comput. Des. Eng. 3(2), 226–249 (2016)

    Google Scholar 

  86. Kaveh, A., Mahdavi, V.R.: Optimal design of structures with multiple natural frequency constraints using a hybridized BB-BC/Quasi-Newton algorithm. Period. Politech. 57(1), 1–12 (2013)

    Google Scholar 

  87. Kaveh, A., Mahdavi, V.R.: Two-dimensional colliding bodies algorithm for optimal design of truss structures. Adv. Eng. Softw. 83, 70–79 (2015)

    Google Scholar 

  88. Tejani, G.G., Savsani, V.J., Petal, V.K.: Modified sub-population teaching-learning-based optimization for design of truss structures with natural frequency constraints. Mech. Based Des. Struct. 44(4), 495–513 (2016)

    Google Scholar 

  89. Mozaffari, A., Ebrahimnejad, M.: The great salmon run metaheuristic for robust shape and size design of truss structures with dynamic constraints. Int. J. Appl. Metaheuristic Comput. 5(2), 54–79 (2014)

    Google Scholar 

  90. Ho-Huu, V., Vo-Duy, T., Luu-Van, T., Le-Anh, L., Nguyen-Thoi, T.: Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme. Autom. Construct. 68, 81–94 (2016)

    Google Scholar 

  91. Hosseinzadeh, Y., Taghizadieh, N., Jalili, S.: Hybridizing electromagnetism-like mechanism algorithm with migration strategy for layout and size optimization of truss structures with frequency constraints. Neural Comput. Appl. 27(4), 953–971 (2016)

    Google Scholar 

  92. Farshchin, M., Camp, C.V., Maniat, M.: Optimal design of truss structures for size and shape with frequency constraints using a collaborative optimization strategy. Expert Syst. Appl. 66, 203–216 (2016)

    Google Scholar 

  93. Jalili, S., Hosseinzadeh, Y., Kaveh, A.: Chaotic biogeography algorithm for size and shape optimization of truss structures with frequency constraints. Period. Polytech. 58(4), 397–422 (2014)

    Google Scholar 

  94. Ho-Huu, V., Nguyen-Thoi, T., Truong-Khac, T., Le-Anh, L., Vo-Duy, T.: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Comput. Appl. https://doi.org/10.1007/s00521-016-2426-1

    Google Scholar 

  95. Taheri, S.H.S., Jalili, S.: Enhanced biogeography-based optimization: a new method for size and shape optimization of truss structures with natural frequency constraints. Lat. Am. J. Solids Struct. 13(7), 1406–1430 (2016)

    Google Scholar 

  96. Pham, H.A.: Truss optimization with frequency constraints using enhanced differential evolution based on adaptive directional mutation and nearest neighbor comparison. Adv. Eng. Softw. 102, 142–154 (2016)

    Google Scholar 

  97. Grandhi, R.V., Venkayya, V.B.: Structural optimization with frequency constraints. AIAA J. 26(7), 858–866 (1988)

    MATH  Google Scholar 

  98. Sedaghati, R., Suleman, A., Tabarrok, B.: Structural optimization with frequency constraints using the finite element force method. AIAA J. 40(2), 382–388 (2002)

    Google Scholar 

  99. Wang, D., Zha, W.H., Jiang, J.S.: Truss optimization on shape and sizing with frequency constraints. AIAA J. 42, 1452–1456 (2004)

    Google Scholar 

  100. Lin, J.H., Chen, W.Y., Yu, Y.S.: Structural optimization on geometrical configuration and element sizing with statical and dynamical constraints. Comput. Struct. 15(5), 507–515 (1982)

    MATH  Google Scholar 

  101. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943)

    MathSciNet  MATH  Google Scholar 

  102. Hussey, M.J.L.: General theory of cyclically symmetric frames. J. Struct. Div. ASCE 93(3), 167–176 (1967)

    Google Scholar 

  103. Leung, A.Y.T.: Dynamic analysis of periodic structures. J. Sound Vib. 72(4), 451–467 (1980)

    MATH  Google Scholar 

  104. Williams, F.W.: An algorithm for exact eigenvalue calculations for rotationally periodic structures. Int. J. Numer. Methods Eng. 23(4), 609–622 (1986)

    MathSciNet  MATH  Google Scholar 

  105. Vakakis, A.F.: Dynamics of a nonlinear periodic structure with cyclic symmetry. Acta Mech. 95(1–4), 197–226 (1992)

    MathSciNet  MATH  Google Scholar 

  106. Karpov, E.G., Stephen, N.G., Dorofeev, D.L.: On static analysis of finite repetitive structures by discrete Fourier transform. Int. J. Solids Struct. 39(16), 4291–4310 (2002)

    MATH  Google Scholar 

  107. Liu, L., Yang, H.: A paralleled element-free Galerkin analysis for structures with cyclic symmetry. Eng. Comput. 23(2), 137–144 (2007)

    Google Scholar 

  108. El-Raheb, M.: Modal properties of a cyclic symmetric hexagon lattice. Comput. Struct. 89, 2249–2260 (2011)

    Google Scholar 

  109. Zingoni, A.: Symmetry recognition in group-theoretic computational schemes for complex structural systems. Comput. Struct. 94–95, 34–44 (2012)

    Google Scholar 

  110. Zingoni, A.: Group-theoretic insights on the vibration of symmetric structures in engineering. Philos. Trans. R. Soc. A 372, 20120037 (2014)

    MathSciNet  MATH  Google Scholar 

  111. Shi, C., Parker, R.G., Shaw, S.W.: Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction. Mech. Mach. Theory 66, 56–65 (2013)

    Google Scholar 

  112. Tran, D.M.: Reduced models of multi-stage cyclic structures using cyclic symmetry reduction and component mode synthesis. J. Sound Vib. 333, 5443–5463 (2014)

    Google Scholar 

  113. Kaveh, A., Nikbakht, M., Rahami, H.: Improved group theoretic method using graphs products, for the analysis of symmetric-regular structures. Acta Mech. 210(3–4), 265–289 (2010)

    MATH  Google Scholar 

  114. Kaveh, A., Rahami, H.: Block circulant matrices and their applications to free vibration analysis of cyclically repetitive structures. Acta Mech. 217(1–2), 51–62 (2011)

    MATH  Google Scholar 

  115. Kaveh, A., Nikbakht, M.: Analysis of space truss towers, using combined symmetry groups and product graphs. Acta Mech. 218(1), 113–160 (2011)

    MATH  Google Scholar 

  116. Kaveh, A., Shojaie, I., Rahami, H.: New developments in the optimal analysis of regular and near-regular structures: decomposition, graph products, force method. Acta Mech. 226(3), 665–681 (2015)

    MathSciNet  MATH  Google Scholar 

  117. Shojaei, I., Kaveh, A., Rahami, H., Bazrgari, B.: Efficient non-linear analysis and optimal design of mechanical and biomechanical systems. Adv. Biomech. Appl. 2(1), 11–27 (2015)

    Google Scholar 

  118. Kaveh, A., Zolghadr, A.: Optimal analysis and design of large-scale domes with frequency constraints. Smart Struct. Syst. 18(4), 733–754 (2016)

    Google Scholar 

  119. Koohestani, K., Kaveh, A.: Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Elem. Anal. Des. 46(10), 943–948 (2010)

    Google Scholar 

  120. Kaveh, A., Ilchi Ghazaan, M.: Optimum design of large-scale truss towers using cascade optimization. Acta Mech. 227(9), 2645–2656 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Zolghadr, A. Meta-heuristic methods for optimization of truss structures with vibration frequency constraints. Acta Mech 229, 3971–3992 (2018). https://doi.org/10.1007/s00707-018-2234-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2234-z

Navigation