Skip to main content
Erschienen in: Acta Mechanica 9/2019

15.07.2019 | Note

A decomposition of Laplace stretch with applications in inelasticity

verfasst von: Alan D. Freed, Jean-Briac le Graverend, K. R. Rajagopal

Erschienen in: Acta Mechanica | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The kinematics of an inelastic solid established in terms of Laplace stretch and its rate are decomposed into one stretch that describes an elastic response, another stretch that describes an inelastic response, and their rates. These kinematics are a direct consequence of Laplace stretch belonging to the group of all real, \(3 \times 3\), upper-triangular matrices with positive diagonal elements. The Laplace stretch follows from a Gram–Schmidt decomposition of the deformation gradient.
Fußnoten
1
In the previous papers on this topic [69], ADF et al. adopted a notation introduced by Srinivasa [10] to denote the upper-triangular representation of deformation that, viz. \(\tilde{{\mathbf {\mathsf{{F}}}}}\), they called distortion. McLellan [4, 5] denoted this upper-triangular representation of deformation as \({\mathbf {\mathsf{{H}}}}\), but he did not name this field. Here, we call it the Laplace stretch and we represent it as \(\varvec{\mathcal {U}}\), using a script-like calligraphic font to denote it and its associated fields in an attempt to simplify the notation and make it more intuitive.
 
2
The set of all real, \(3 \times 3\), upper-triangular matrices with positive diagonal elements constitutes a mathematical group under matrix multiplication. In stark contrast, the set of all real, \(3 \times 3\), symmetric matrices with positive eigenvalues does not constitute a group under matrix multiplication, because there is no closure under such a multiplication.
 
3
Eckart [16] was the first to propose such a decomposition, within the context of a much more general, differential, geometric consideration. Specifically, he considered stress to be some function of a deformation gradient \({\mathbf {\mathsf{{F}}}}\) whose reference configuration varied.
 
4
See also Rajagopal’s discussion on the status of natural configurations [17].
 
5
With rapid developments in the experimental technologies of digital image correlation (DIC) and electron backscatter diffraction (EBSD), it is now possible to apply these techniques, collaboratively, to measure changes in displacement and crystallographic angle, respectively, whereby components of the deformation gradient can be quantified within individual grains of heterogeneously deformed samples [23]. Such technologies could be used to compare our decomposition \({\mathbf {\mathsf{{F}}}} = {\mathbf {\mathsf{{Q}}}} \varvec{\mathcal {U}}^e \varvec{\mathcal {U}}^p\) against Lee’s [1] decomposition \({\mathbf {\mathsf{{F}}}} = {\mathbf {\mathsf{{F}}}}^e {\mathbf {\mathsf{{F}}}}^p\).
 
Literatur
1.
Zurück zum Zitat Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)CrossRefMATH Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)CrossRefMATH
2.
Zurück zum Zitat Leon, S.J., Björck, Å., Gander, W.: Gram-Schmidt orthogonalization: 100 years and more. Numer. Linear Algebra Appl. 20, 492–532 (2013)MathSciNetCrossRefMATH Leon, S.J., Björck, Å., Gander, W.: Gram-Schmidt orthogonalization: 100 years and more. Numer. Linear Algebra Appl. 20, 492–532 (2013)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Francis, J.G.F.: The QR transformation: a unitary analogue to the LR transformation–part 1. Comput. J. 4(3), 265–271 (1961)MathSciNetCrossRefMATH Francis, J.G.F.: The QR transformation: a unitary analogue to the LR transformation–part 1. Comput. J. 4(3), 265–271 (1961)MathSciNetCrossRefMATH
4.
Zurück zum Zitat McLellan, A.G.: Finite strain coordinate and the stability of solid phases. J. Phys. C: Solid State Phys. 9, 4083–4094 (1976)CrossRef McLellan, A.G.: Finite strain coordinate and the stability of solid phases. J. Phys. C: Solid State Phys. 9, 4083–4094 (1976)CrossRef
5.
Zurück zum Zitat McLellan, A.G.: The Classical Thermodynamics of Deformable Materials, Cambridge Monographs in Physics. Cambridge University Press, Cambridge (1980) McLellan, A.G.: The Classical Thermodynamics of Deformable Materials, Cambridge Monographs in Physics. Cambridge University Press, Cambridge (1980)
7.
Zurück zum Zitat Freed, A.D., Erel, V., Moreno, M.R.: Conjugate stress/strain base pairs for planar analysis of biological tissues. J. Mech. Mater. Struct. 12, 219–247 (2017)MathSciNetCrossRef Freed, A.D., Erel, V., Moreno, M.R.: Conjugate stress/strain base pairs for planar analysis of biological tissues. J. Mech. Mater. Struct. 12, 219–247 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Srinivasa, A.R.: On the use of the upper triangle (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)CrossRefMATH Srinivasa, A.R.: On the use of the upper triangle (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)CrossRefMATH
12.
Zurück zum Zitat Green, G.: On the propagation of light in crystallized media. Trans. Camb. Philos. Soc. 7, 121–140 (1841) Green, G.: On the propagation of light in crystallized media. Trans. Camb. Philos. Soc. 7, 121–140 (1841)
13.
Zurück zum Zitat Mirsky, L.: An Introduction to Linear Algebra. Clarendon Press, Oxford (1955)MATH Mirsky, L.: An Introduction to Linear Algebra. Clarendon Press, Oxford (1955)MATH
14.
Zurück zum Zitat Altmann, S.L.: Rotations, Quarternions, and Double Groups. Oxford University Press, Oxford (1986)MATH Altmann, S.L.: Rotations, Quarternions, and Double Groups. Oxford University Press, Oxford (1986)MATH
15.
Zurück zum Zitat Rosakis, P.: Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109, 1–37 (1990)MathSciNetCrossRefMATH Rosakis, P.: Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109, 1–37 (1990)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)MathSciNetCrossRefMATH Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Rajagopal, K.R.: Multiple configurations in continuum mechanics, Report of the Institute of Computational and Applied Mechanics, University of Pittsburgh, Pittsburgh, PA (1995) Rajagopal, K.R.: Multiple configurations in continuum mechanics, Report of the Institute of Computational and Applied Mechanics, University of Pittsburgh, Pittsburgh, PA (1995)
18.
Zurück zum Zitat Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57, 95–108 (2004)CrossRef Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57, 95–108 (2004)CrossRef
19.
Zurück zum Zitat Tabor, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48(8), 487–545 (1995)CrossRef Tabor, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48(8), 487–545 (1995)CrossRef
20.
Zurück zum Zitat Ghosh, P., Srinivasa, A.R.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)MathSciNetCrossRefMATH Ghosh, P., Srinivasa, A.R.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Clayton, J.D., McDowell, D.L.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)CrossRefMATH Clayton, J.D., McDowell, D.L.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)CrossRefMATH
22.
Zurück zum Zitat Clayton, J.D.: An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 67(1), 127–158 (2014)MathSciNetCrossRefMATH Clayton, J.D.: An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 67(1), 127–158 (2014)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Jiang, J., Zhang, T., Dunne, F.P.E., Britton, T.B.: Deformation compatibility in a single crystalline Ni superalloy. Proc. R. Soc. Lond. A 472, 20150690 (2016)CrossRef Jiang, J., Zhang, T., Dunne, F.P.E., Britton, T.B.: Deformation compatibility in a single crystalline Ni superalloy. Proc. R. Soc. Lond. A 472, 20150690 (2016)CrossRef
24.
Zurück zum Zitat Dafalias, Y.F.: Plastic spin: necessity or redundancy? Int. J. Plast. 14(9), 909–931 (1998)CrossRefMATH Dafalias, Y.F.: Plastic spin: necessity or redundancy? Int. J. Plast. 14(9), 909–931 (1998)CrossRefMATH
25.
Zurück zum Zitat Mandel, J.: Plasticité classique et viscoplasticité, No. 97 in ICMS, Udine, Springer, Wien (1971) Mandel, J.: Plasticité classique et viscoplasticité, No. 97 in ICMS, Udine, Springer, Wien (1971)
26.
27.
Zurück zum Zitat Spurrier, R.A.: Comment on “Singularity-free extraction of a quaternion from a direction-cosine matrix”. J. Spacecr. Rockets 15, 255 (1978)CrossRef Spurrier, R.A.: Comment on “Singularity-free extraction of a quaternion from a direction-cosine matrix”. J. Spacecr. Rockets 15, 255 (1978)CrossRef
28.
Zurück zum Zitat Atluri, S.N., Cazzani, A.: Rotations in computational solid mechanics. Arch. Comput. Methods Eng. 2, 49–138 (1995)MathSciNetCrossRef Atluri, S.N., Cazzani, A.: Rotations in computational solid mechanics. Arch. Comput. Methods Eng. 2, 49–138 (1995)MathSciNetCrossRef
Metadaten
Titel
A decomposition of Laplace stretch with applications in inelasticity
verfasst von
Alan D. Freed
Jean-Briac le Graverend
K. R. Rajagopal
Publikationsdatum
15.07.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 9/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02462-3

Weitere Artikel der Ausgabe 9/2019

Acta Mechanica 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.