Skip to main content
Log in

Weighted morphology: a new approach towards phylogenetic assessment of Nostocales (Cyanobacteria)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The classification of order Nostocales (Cyanobacteria) and inter relationships of morphologically similar taxa is still debatable due to ever changing morphological features. No attempt has been made to improve the morphological taxonomy despite the fact that it is the morphology that represents the totality of genes. To test the validity of morphological taxonomy and fine tune the phylogenetic relationships within the order Nostocales a new weighted morphology approach was applied by using 76 isolates and their 16S rRNA gene sequences. Further, the study was extended with morphological data set of the remaining 232 taxa for which no molecular data are yet available. Trichome aggregation, heterocyst shape, and akinete shape are suggested as important and stable features for identification. At 30 % weight assignment to the selected morphological characters, morphological taxonomy found 36 % compatible with 16S tree. Adding weight to the morphological characters considerably improved the congruence between the morphology and 16S rRNA-based phylogenetic trees of the order Nostocales. When the weighting procedure was extended to all the Nostocalean members irrespective of molecular data availability, it was found that Nostoc sphaericum and Nostoc microscopicum closely assembled in a single clade. Closer arrangement of Aulosira and Nodularia represent the subfamily aulosirae (Bornet and Flahault Ann Sci Nat Bot 7:223–224, 1888) while taxonomic affiliation of Cylindrospermum with Nostoc, Anabaena, and Raphidiopsis representing the subfamily anabaenae (Bornet and Flahault Ann Sci Nat Bot 7:223–224, 1888) was resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera G, Mirande JM (2005) A new species of Jenynsia (Cyprinodontiformes: Anablepidae) from North Western Argentina and its phylogenetic relationships. Zootaxa 1096:29–39

    Google Scholar 

  • Anagnostidis K, Komarek J (1985) Modern approach to the classification system of the Cyanophytes. 1: Introduction. Arch of Hydrobiol 71(Algol Stud38/39):291–302

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of the Cyanophytes 3: Oscillatoriales. Algol Stud 50(53):327–472

    Google Scholar 

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of cyanophytes. Teil 5- Stigonematales. Algol Stud 59:1–73

    Google Scholar 

  • Bornet E, Flahault C (1888) Revision des Nostocacées hétérocystées. Ann Sci Nat Bot 7:223–224

    Google Scholar 

  • Bourelly P (1970) Les algues d’eaudouce iii. N Boubee, Cie Paris, 512

    Google Scholar 

  • Castenholz RW (2001) Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology 2nd, pp.473-600. Springer-Verlag 1, New York

    Google Scholar 

  • Collucci E, Anice M, Sallum M (2007) Cladistic analysis of the subgenus Anopheles (Anopheles) Meigen (Diptera: Culicidae) based on morphological characters 277. Mem Inst Oswaldo Cruz, Rio de Janeiro 102:277–291

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council Agricultural Research, New Delhi

    Google Scholar 

  • Farris JS (1969) A successive approximations approach to character weighting. Syst Zool 18:374–385

    Article  Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in Cladistics II. Columbia University Press, New York, pp 7–36

    Google Scholar 

  • Farris JS (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fritsch FE (1945) The structure and the reproduction of algae. Cambridge University Press; II, Cambridge

    Google Scholar 

  • Geitler L (1932) Cyanophyceae InRabenhorst’s Kryptogamen flora. Akademische Verlagsgesellschaft, Leipzig, pp 1–1196

    Google Scholar 

  • Goloboff PA (1993) Estimating character weights during tree search. Cladistics 9:83–91

    Article  Google Scholar 

  • Goloboff PA, Carpenter JM, Arias J, Miranda Esquivel DR (2008) Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24:758–773

    Article  Google Scholar 

  • Gomont M (1892) Monographie des Oscillariées (Nostocacées homocystées. Ann Sci Nat, Bot, Séries 7(15):263–368

    Google Scholar 

  • Gugger MF, Hoffman L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–357

    Article  CAS  PubMed  Google Scholar 

  • Gugger M, Lyra C, Henriksen P, Coute’ A, Humbert JF, Sivonen S (2002) Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 52:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Iteman I, Rippka R, Tandeau De Marsac N, Herdman M (2002) rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiol1 48:481–496

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Muntu HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–1321

    Chapter  Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of Cyanophytes 4 - Nostocales. Arch Hydrobiol Suppl 82:247–345

    Google Scholar 

  • Komárek J, Jan, M (2012).An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiol, 1–25.

  • Kützing FT (1843) Phycologia generalis or anatomy, physiology, and the system customer Tange with 80 color printed boards, drawn and gravity by the author. F. A. Brockhaus, Leipzig

  • Lanyon SM (1987) Jackknifing and bootstrapping: important “new” statistical techniques for ornithologists. The Am Ornithol’ Union 104:144–146

    Google Scholar 

  • Lehtimäki J, Lyra C, Suomalainen S, Sundman P, Rouhiainen L, Paulin L, Salkinoja-Salonen M, Sivonen K (2000) Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50:1043–1053

    Article  PubMed  Google Scholar 

  • Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman PM, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst and Evol Microbiol 51:513–526

    CAS  Google Scholar 

  • Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: An extensible file format for systematic information. Syst Biol46:590–621.

  • Nandi OI, Chase MW, Endress PK (1998).A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Ann of the Missouri Bot Gard 85: 137–214.

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Nye TMW, Liò P, Gilks WR (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119

    Article  CAS  PubMed  Google Scholar 

  • Ramirez MJ (2003) The spider subfamily Amaurobioidinae (Aranae, Anyphaenidae): a phylogenetic revision at the generic level. BullAmer Mus Nat Hist 277:1–262

    Article  Google Scholar 

  • Rippka R, DeReuelles J, Waterbury JB, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, JM L k, Wahlsten M, Sivonen K (2007) Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol Ecol 61:74–84

    Article  CAS  PubMed  Google Scholar 

  • Singh RN (1942).Wollea Bharadwajae sp. nov. and it’s Autecology. Ann Bot6:593–606.

  • Tamura KD, PetersonN PG, Stecher Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Toby J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl A Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Zapomělová E (2008) Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiol 53(4):333–341

    Article  Google Scholar 

Download references

Acknowledgments

Lal Chand Rai is thankful to DST for project and J.C Bose National Fellowship. Poonam Bhargava is thankful to DST for young scientist. Siba Prasad Adhikary is thankful to Visva Bharati, Santiniketana, (W.B). Thanks to the following for providing us cyanobacterial samples: G.L. Tiwari, Siba Prasad Adhikary and Indian Agricultural Research Institute, Pusa New Delhi. Thanks to Sarita, Alok, Chhavi and Niharika, for genomic DNA isolation and PCR optimization. We are also thankful to Subhash Chandra Lakhotia, the Incharge microscopy section, Laboratory of Cytogenetics, Zoology Department, Banaras Hindu University.

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mishra.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Matrix and characters with their different states and their description for 76 taxa. (TXT 8 kb)

Appendix 2

Matrix and characters with states and their description for 232 taxa (TXT 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Bhargava, P., Adhikary, S.P. et al. Weighted morphology: a new approach towards phylogenetic assessment of Nostocales (Cyanobacteria). Protoplasma 252, 145–163 (2015). https://doi.org/10.1007/s00709-014-0629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0629-9

Keywords

Navigation