Skip to main content
Log in

Natural carbon nanofibers in graphite

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Natural carbon nanofibers have been found in diamond-bearing carbonatites from the Chagatay trachyte-carbonatite complex (Uzbekistan) and described using a series of methods, including SEM, TEM, and Raman spectroscopy. The carbon nanofibers occur as tight aggregates within the host graphite, forming natural bulk nano-structural intergrowths. This is the first description of such carbon nanofibers either in nature or in the laboratory. The data from this study suggest a new possible means of diamond formation. These carbon intergrowths could potentially be used as a model for the fabrication of new types of carbon nanostructural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bitter JH (2006) Carbon nanofibers in catalysis—fundamental studies and scope of application. In: Murzin DY (ed) Nanocatalysis. Research Signpost, Kerala, pp 99–125

    Google Scholar 

  • Boskovic VS, Zeze DA, Forrest RD, Silvab SRP (2004) Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas. J Appl Phys 96(6):3443–3446

    Article  Google Scholar 

  • Buseck PR (2002) Geological fullerenes: review and analysis. Earth Planet Sci Lett 203:781–792

    Article  Google Scholar 

  • Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257:215–217

    Article  Google Scholar 

  • Che G, Lakshmi BB, Martin CR, Fisher ER (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  Google Scholar 

  • Choudhary SK, Gupta AK (2008) Spatially varying super-lattice structures and linear fringes on graphite surface. J Phys: Condens Matter 20:225008–6

    Article  Google Scholar 

  • Derjaguin BV, Fedoseev DV (1973) Physico-chemical synthesis of diamond in metastable range. Carbon 11(4):299–308

    Article  Google Scholar 

  • Divaev FK (1996) Chatagai carbonatite complex—a new type of magmatic rocks in Uzbekistan. Geological Journal of Uzbekistan 6:32–41

    Google Scholar 

  • Djuraev AD, Divaev FK (1999) Melanocratic carbonatites—new type of diamond-bearing rocks, Uzbekistan. In: Mineral deposits: processes to processing. Rotterdam, Balkema, pp 639–642

  • Dresselhaus MS, Dresselhaus M, Eklund P (eds) (1996) Science of fullerenes and carbon nanotubes. Academic Press, San-Diego, 945 p

  • Eklund PC, Rao AM (eds) (1999) Fullerene polymers and fullerene polymer composites. Springer, Berlin, 416 p

    Google Scholar 

  • Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil Trans R Soc Lond A 362:2477–2512

    Article  Google Scholar 

  • Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–38

    Article  Google Scholar 

  • Hai-Lin S, Quan-Tong S, Jin-Feng J, Qing-Zhe Z, Qi-Kun X (2003) Scanning tunneling microscopy study of superlattice domain boundaries on graphite surface. Surf Sci 542:94–100

    Article  Google Scholar 

  • Hirsch A (ed) (1999) Fullerenes and related structures. Springer, Berlin, 246 p

    Google Scholar 

  • Isaenko SI, Shumilova TG, Divaev FK (2010) Raman spectroscopy of microdiamond from Chagatai carbonatites. Proceedings of XI Congress of Russian Mineralogical Society: Modern mineralogy: from theory to practice. Saint-Petersburg, pp. 59–60

  • Jaszczak JA, Dimovski S, Hackney SA, Robinson GW, Bosio P, Gogotsi Y (2007) Micro- and nano-scale graphite cones and tubes from Hackman Valley, Kola Peninsula, Russia. Can Mineral 45(2):379–389

    Article  Google Scholar 

  • Khanna V, Bakshi BR, Lee LJ (2008) Carbon nanofiber production life cycle energy consumption and environmental impact. J Indust Ecol 12(3):394–410

    Article  Google Scholar 

  • Kogarko LI, Ryabchikov ID, Divaev FK, Wall F (2010) Regime of carbon compounds in carbonatites in Uzbekistan: evidence from carbon isotopic composition and thermodynamic simulations. Geochem Int 48(11):1055

    Article  Google Scholar 

  • Kostic R, Miric M, Radic T, Radovic M, Gajic R, Popovic ZV (2009) Optical characterization of graphene and highly oriented pyrolytic graphite. Acta Physi Polon A 116(4):718–721

    Google Scholar 

  • Kovalevski VV, Prikhodko AV, Buseck PR (2005) Diamagnetism of natural fullerene-like carbon. Carbon 43(2):401–405

    Article  Google Scholar 

  • Litvin YA, Chudinovskikh LT, Saparin GV, Obyden SK, Chukichev MV, Vavilov VS (1999) Diamonds of new alkaline carbonate-graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diam Relat Mat 8:267–272

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Mineral 20(3):317–331

    Article  Google Scholar 

  • Mudimela PM, Nasibulina LI, Nasibulin AG, Cwirzen A, Valkeap M, Habermehl-Cwirzen K et al (2009) Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials. J Nanomat 2009(ID 526128):1–4

    Article  Google Scholar 

  • Gogotsi Y (ed) (2006) Nanomaterials handbook. London: Boca Raton, New York: Taylor and Francis Group, 780 p

  • Pal’yanov YuN, Sokol AG, Khokhryakov AF, Pal’yanova GA, Borzdov YuM, Sobolev NV (2000) Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dok Earth Sci 375(9):1395–1398

    Google Scholar 

  • Pham-Huu C, Vieira R, Louis B, Carvalho A (2006) About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalist. J Catal 240:194–202

    Article  Google Scholar 

  • Rahong S, Klumcheun A, Treetong A, Soottitantawat A, Fukaya K, Singjai P, Pratontep S (2008) Synthesis of carbon nanofibers by chemical vapor deposition using polyoxometalates as catalysts. CMU J Nat Sci—Special Issue on Nanotechnology 7(1):81–88

    Google Scholar 

  • Rietmeijer FJ, Rietmeijer FJM (eds) (2006) Natural fullerenes and related structures of elemental carbon. Springer, Netherlands, 320 p

  • Seelaboyina R, Boddepalli S, Noh K, Jeon M, Choi W (2008) Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotech 19:065605–4

    Article  Google Scholar 

  • Sen S, Puri IK (2004) Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles. Nanotech 15:264–268

    Article  Google Scholar 

  • Seung-Hwan M, Wen-Jie J, Taek-Rae K, Hyun-Sik H, Byung-Won C, Myung-Soo K (2005) Performance of graphite electrode modified with carbon nanofobers for lithium ion secondary battery. J Ind Eng Chem 11(4):594–602

    Google Scholar 

  • Shumilova TG (1997) Method of nonkemberlite diamond prospecting. Patent Russia 2087012(22)

  • Shumilova TG (2000) Allotropic modifications of carbon. 31st International Congress, Brazil, Rio de Janeiro, CD

  • Shumilova TG (2003) Mineralogy of native carbon. UD RAS press, Yekaterinburg, 316 p (in Russian)

  • Shumilova TG, Akai J (2004) Natural carbon nanophases. Geoprint, Syktyvkar, 20 p (in Russian)

  • Shumilova TG, Isaenko (2011) Thermal emission during the process of carbon phases formation from calcite melt. Vestnik of the Institute of Geology 2:2–5 (in Russian)

    Google Scholar 

  • Shumilova TG, Weirich ThE, Mayer J (2008) Nanostructures of natural carbon substances. In: Minerals and mineral formation, structure, variety and evolution of mineral world, role of minerals in life development, biomineralogical interactions. IG Komi CS UD RAS, Syktyvkar, pp. 234–240 (in Russian)

  • Shumilova TG, Mayer J, Isaenko SI (2011a) Natural monoscrystalline lonsdaleite. Dok Earth Sci (in press)

  • Shumilova TG, Danilova YuV, Gorbunov MV, Isaenko SI (2011b) Natural Monocrystalline α-carbyne. Dok Earth Sci 436(1):152–154

    Article  Google Scholar 

  • Tan PH, Dimovski S, Gogotsi Y (2004) Raman scattering of non-planar graphite: arched edges, polyhedral crystals, arched edges, polyhedral crystals. Phil Trans R Soc Lond A 362:2289–2310

    Article  Google Scholar 

  • Tanemura M, Okita T, Tanaka J, Kitazawa M, Itoh K, Miao L et al (2006) Room-temperature growth and applications of carbon nanofibers: a review. IEEE Transactions on Nanotechnology 5(5):587–594

    Article  Google Scholar 

  • Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chem Erd 64:1–74

    Article  Google Scholar 

  • Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  • Wen-Jie J, Rae KT, Hwan MS, Yun-Soo L, Myung-Soo K (2006) Graphite-carbon nanofiber composite anode modified with nanosize metal particles for lithium ion battary. Materials Science Forum 510–511:1078–1081

    Google Scholar 

  • Wing-Tat P, Colm D (2006) A review and outlook for an anomaly of scanning tunneling microscopy STM—superlattice on graphite. J Phys D: Appl Phys 38:R329–R355

    Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Yu L, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers. J Mat Sci 39:1091–1094

    Article  Google Scholar 

  • Yu T, Fujita H, Wan-Hua L, Yuan-Yao L, Fuijii T, Sakoda A (2010) Synthesis of carbon nanofibers from poly(ethylene glycol) with controlled structure. Adsorption 16(1–2):57–68

    Google Scholar 

  • Zhao Q, Wagner HD (2004) Raman spectroscopy of carbon-nanotube-based composites. Phil Trans Lond A 362:2407–2424

    Article  Google Scholar 

  • Zhu Zh, Wang G, Sun M, Li X, Li Ch (2011) Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Act 56:1366–1372

    Article  Google Scholar 

Download references

Acknowledgements

The study was principally supported by the Russian Science Support Foundation to T.G.Shumilova. Additional financial support was received from the Program Earth Sciences Department of the Russian Academy of Sciences # 5 (09-T-5-1003) to T.G.Shumilova and S.I.Isaenko. The authors thank J.A. Jaszczak for scientific discussions and help in polishing the text. V.N.Filippov is thanked for assistance in use of the SEM. D. Harlov is thanked for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Grygoryevna Shumilova.

Additional information

Editorial handling: V. Kahlenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumilova, T.G., Isaenko, S.I., Divaev, F.K. et al. Natural carbon nanofibers in graphite. Miner Petrol 104, 155–162 (2012). https://doi.org/10.1007/s00710-011-0189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-011-0189-z

Keywords

Navigation