Skip to main content

Advertisement

Log in

Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): implications for a metasomatic genetic model

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The magnesite deposit of Hohentauern/Sunk, hosted in Viseán carbonate rocks, is one of the best-exposed examples of “Veitsch type” sparry magnesite deposits, which are located in the Veitsch nappe of the Austroalpine Greywacke zone (Eastern Alps/Austria). The sparry magnesite is stratiform and stratabound within the Viseán Steilbachgraben Formation and displays distinct metasomatic features and textures. The sparry magnesite of the Hohentauern/Sunk deposit is characterized by pinolites, rosettes and banded (zebra) textures. Due to microinclusions of dolomite and redolomitzation, the CaO/MgO of magnesite is elevated. Concentrations of selected major and trace elements (Fe-Mn, Sr-Ba, Cr-Ni) in sparry magnesite indicate formation in a marine/evaporitic environment and by Mg2+-metasomatism. The REE patterns of magnesite are characterized by low LREE/HREE, depletion of LREE and a negative Ce anomaly. The δ18O (9.59 to 12.32 ‰ SMOW) and δ13C (−2.23 to −0.02 ‰ PDB) values of magnesite overlap with those published for magnesite formed by metasomatic replacement of dolomite. Fluid inclusions in the sparry magnesite indicate a high salinity (22.4 mass% NaCl equivalent) of the Mg-rich fluid; it is of marine/evaporitic origin. All geological, petrographical and geochemical features support a diagenetic dolomitization of the carbonate host rocks followed by magnesite formation via metasomatic replacement and redolomitization. Sm-Nd geochronology indicates a Late Carboniferous to Early Permian age for magnesite formation triggered by intraformational circulation of fluids derived from buried Carboniferous evaporites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aharon P (1988) A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia - Implications for the origin of strata-bound massive magnesites. Chem Geol 69:127–145. doi:10.1016/0009–2541(88)90164–7

    Article  Google Scholar 

  • Azim Zadeh AM (2009) The genetic model of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria). PhD thesis, University of Leoben

  • Azim Zadeh AM, Ebner F (2010) Der Kokardendolomit in der Spatmagnesitlagerstätte Hohentauern/Sunk (Grauwackenzone/Österreich). J Alp Geol 52:85–86

    Google Scholar 

  • Azim Zadeh AM, Ebner F, Prochaska W, Jiang SY (2005) Tektonische Struktur und Geochemie der Magnesitlagerstätte Hohentauern. Mitt Österr Miner Ges 151:23

    Google Scholar 

  • Azim Zadeh AM, Ebner F, Jiang SY, Klötzli U (2008) Mineralisationsphasen in der Spatmagnesitlagerstätte Sunk/Hohentauern-Stmk./Ostalpen. J Alpine Geol 49:5

    Google Scholar 

  • Azim Zadeh AM, Ebner F, Jiang SY (2009) The Hohentauern/Sunk deposit – a key for unraveling sparry magnesite formation in the Graywacke zone/Eastern Alps, Austria. Mitt Österr Miner Ges 155:26

    Google Scholar 

  • Azim Zadeh AM, Bakker RJ, Ebner F (2011) P-T conditions of fluid trapping at Hohentauern/Sunk sparry magnesite deposit (Eastern Alps, Austria). Berichte Geol B A 87:26–27

    Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23. doi:10.1016/S0009–2541(02)00268–1

    Article  Google Scholar 

  • Bau M, Möller P (1992) Rare-earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246. doi:10.1007/Bf01163114

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing-point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684. doi:10.1016/0016-7037(93)90378-A

    Article  Google Scholar 

  • Botrell SH, Yardley BWD, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Minéral 111:279–290

    Google Scholar 

  • De Groot PA (2009) Carbon (13C/12C) and oxygen (18O/16O) isotopes in carbonate rocks and mineral. In: De Groot PA (ed) Handbook of stable isotope analytical techniques, vol 2. Elsevier, Amsterdam, pp 273–329

    Google Scholar 

  • Ebner F, Azim Zadeh AM (2007) Beeinflussung der Magnesitlagerstätte Sunk/Hohentauern durch die Pölsstörung, Im Rahmen des Schwerpunktprojektes, “Lagerstätten und Mineralisationsprozesse in spätorogenen Scherzonensystemen von Kollisionsorogenen”. Unpubl report. Kommission für Grundlagen der Mineralrohstoffforschung der Österreichischen Akademie der Wissenschaften

  • Ebner F, Prochaska W (2001) Die Magnesitlagerstätte Sunk/Hohentauern und ihr geologischer Rahmen. Joannea Geol Paläont 3:63–103

    Google Scholar 

  • Ebner F, Wilson I (2006) Magnesit - globales Potenzial und geologische Lagerstättencharakteristik. Berg- Hüttenmänn Monats 151(4):164–174

    Article  Google Scholar 

  • Ebner F, Prochaska W, Azim Zadeh AM (2003) The type region of “Veitsch type” sparry magnesite (Austria/Eastern Alps). International conference of mineralization in Precamberian terranes, Unesco/IUGS IGCP 443. Annual meeting and field correlation, Nanjing, China

  • Ebner F, Prochaska W, Troby J, Azim Zadeh AM (2004) Carbonate hosted sparry magnesite of the Greywacke zone, Austria/Eastern Alps. Acta Petrol Sin 20:791–802

    Google Scholar 

  • Ebner F, Azim Zadeh AM, Jiang SY (2008) Isotope characteristics of Veitsch type sparry magnesite. MRB-01 General contributions to industrial mineral deposits. The 33rd International Geological Congress Oslo, Norway

  • Ebner F, Vozarova A, Kovacs S, Kräutner HG, Krstic B, Szederkenyi T, Jamicic D, Balen D, Belak M, Trajanova M (2008b) Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geol Carpath 59:159–195

    Google Scholar 

  • Felser KO (1977) Die stratigraphische Stellung der Magnesitvorkommen in der östlichen Grauwackenzone (Steiermark, Österreich). Berg- Hüttenmänn Monatsh 122:17–23

    Google Scholar 

  • Fernandez-Nieto C, Torres-Ruiz J, Perez IS, Gonzalez IF, Lopez JMG (2003) Genesis of Mg-Fe carbonates from the Sierra Menera magnesite-siderite deposits, northeast Spain: Evidence from fluid inclusions, trace elements, rare earth elements, and stable isotope data. Econ Geol 98:1413–1426. doi:10.2113/98.7.1413

    Article  Google Scholar 

  • Gao JF, Lu JJ, Lai MY, Lin YP, Pu W (2003) Analysis of trace elements in rock samples using HR-ICPMS. J Nanjing Univ Nat Sci 39:844–850

    Google Scholar 

  • Haditsch JG (1968) Beiträge über das Gefüge von Spatlagerstätten (Bemerkungen zur Genese des Kokardendolomites der Magnesitlagerstätte Sunk bei Trieben). Radex-Rundschau 3:188–193

    Google Scholar 

  • Henjes-Kunst F, Prochaska W (2010) Sm-Nd dating of hydrothermal carbonate formation - the case of the Breitenau magnesite deposit. J Alp Geol 52:138–139

    Google Scholar 

  • Henjes-Kunst F, Prochaska W, Niedermayr A, Sullivan N, Baxter E (2014) Sm–Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria). Chem Geol 387:184–201

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Hogdahl OT, Melsom S, Bowen VT (1968) Neutron activation analysis of lanthanide elements in sea water. In: Baker RA (ed) Trace inorganics in water. Adv Chem Ser 73:308–325

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc Lond 133:637–660

    Article  Google Scholar 

  • Kilias SP, Pozo M, Bustillo M, Stamatakis MG, Calvo JP (2006) Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence. Mineral Deposita 41:713–733. doi:10.1007/s00126-006-0075-5

    Article  Google Scholar 

  • Kodera P, Radvanec M (2002) Comparative mineralogical and fluid inclusion study of the Hnúšt’a-Mútnik talc-magnesite and Miková-Jedl’ovec magnesite deposit (Western Carpathians, Slovakia). Bol Paranaen Geociênc 50:131–150

    Google Scholar 

  • Kralik C, Kiesl W (1992) Geochemische untersuchungen an kugeldolomiten der magnesitlagerstätte sunk-hohentauern (steiermark/österreich). Mitt Ges Geol Bergbaustud Österr 38:31–39

    Google Scholar 

  • Kralik M, Aharon P, Schroll E, Zachmann D (1989) Carbon and oxygen isotope systematics of magnesites: A review. In: Möller P (ed) Magnesite: geology, mineralogy, geochemistry, formation of Mg-carbonates. Monograph Series on Mineral Deposits 28. Borntraeger, Berlin-Stuttgart, pp 197–223

  • Krupenin MT (2002) Comparison of lower and middle Riphean sparry magnesite deposits of the southern Urals province. Bol Paranaen Geocienc 50:43–50

    Google Scholar 

  • Krupenin MT, Kol’tsov AB, Maslov AV (2013) Physicochemical model of the formation of Satka sparry magnesite deposits. Dokl Earth Sci 452:1020–1022. doi:10.1134/S1028334X13100048

    Article  Google Scholar 

  • Leitmeier H, Siegl W (1954) Untersuchungen an magnesiten am nordrande der grauwackenzone salzburgs und ihre bedeutung für die entstehung der spatmagnesite der ostalpen. Berg- Hüttenmänni Monatsh 99(201–208):221–235

    Google Scholar 

  • Ludwig KR (2008) User’s manual for Isoplot 3.6: A geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special publication No. 4

  • Lugli S, Torres-Ruiz J, Garuti G, Olmedo F (2000) Petrography and geochemistry of the Eugui magnesite deposit (Western Pyrenees, Spain): Evidence for the development of a peculiar zebra banding by dolomite replacement. Econ Geol 95:1775–1791. doi:10.2113/95.8.1775

    Google Scholar 

  • Lugli S, Morteani G, Blamart D (2002) Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the upper Triassic burano evaporites (secchia valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources. Mineral Deposita 37:480–494. doi:10.1007/s00126-001-0251-6

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170. doi:10.1086/319243

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857. doi:10.1063/1.1747785

    Article  Google Scholar 

  • Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (2001) Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentol 48:379–397. doi:10.1046/j.1365-3091.2001.00369.x

    Article  Google Scholar 

  • Möller P (1989) Minor and trace elements in magnesite. In: Möller P (ed) Magnesite: geology, mineralogy, geochemistry, formation of Mg-carbonates. Monograph series on mineral deposits, vol 28. Gebrüder Borntraeger, Berlin-Stuttgart, pp 173–195

    Google Scholar 

  • Morteani G, Möller P, Schley F (1982) The rare-earth element contents and the origin of the sparry magnesite mineralizations of Tux-Lanersbach, Entachen Alm, Spiessnagel, and Hochfilzen, Austria, and the lacustrine magnesite deposits of Aiani-Kozani, Greece, and Bela Stena, Yugoslavia. Econ Geol 77:617–631

    Article  Google Scholar 

  • Morteani G, Schley F, Möller P (1983) On the formation of magnesite. In: Schneider HJ (ed) Mineral deposits of the Alps and of the Alpine epoch in Europe. Springer, Berlin, pp 106–116

    Google Scholar 

  • Neubauer F, Handler R, Hermann S, Paulus G (1994) Revised lithostratigraphy and structure of the eastern Graywacke Zone (Eastern Alps). Mitt Österr Geol Ges 86:61–74

    Google Scholar 

  • Niedermayer G, Beran A, Brandstätter F (1989) Diagenetic type magnesites in the Permo-Scythian rocks of the Eastern Alps, Austria. In: Möller P (ed) Magnesite: geology, mineralogy, geochemistry, formation of Mg-carbonates. Monograph Series on Mineral Deposits, vol 28. Gebrüder Borntraeger, Berlin-Stuttgart, pp 35–60

    Google Scholar 

  • Petrascheck WE (1978) Zur Altersbestimmung einiger ostalpiner Erzlagerstätten. Mitt Österr Geol Ges 68:79–87

    Google Scholar 

  • Pohl W (1989) Comparative geology of magnesite deposits and occurrences. In: Möller P (ed) Magnesite: geology, mineralogy, geochemistry, formation of Mg-carbonates. Monograph series on mineral deposits, vol 28. Gebrüder Borntraeger, Berlin-Stuttgart, pp 1–13

    Google Scholar 

  • Pohl W, Siegl W (1986) Sediment-hosted magnesite deposits. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 14. Elsevier, Amsterdam, pp 223–310

    Google Scholar 

  • Prochaska W (2000) Siderite and magnesite mineralizations formed during initial rifting of the Alpine cycle. In: Ebner F et al. (ed) Mineral resources in the Eastern Alps and adjoining areas. Mitt Österr Geol Ges 92:157–184

  • Prochaska W (2000b) Magnesite and talc deposits in Austria. Miner Slovaca 32:543–548

    Google Scholar 

  • Prochaska W, Krupenin M (2013) Formation of magnesite and siderite deposits in the Southern Urals-evidence of inclusion fluid chemistry. Mineral Petrol 107:53–65. doi:10.1007/s00710-012-0251-5

    Article  Google Scholar 

  • Pu W, Zhao KD, Ling HF, Jiang SY (2004) High precision Nd isotope measurement by Triton TI mass spectrometry. Acta Geosci Sin 25:271–274

    Google Scholar 

  • Pu W, Gao JF, Zhao KD, Ling HF, Jiang SY (2005) Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA. J Nanjing Univ Nat Sci 41:445–450

    Google Scholar 

  • Radvanec M, Németh Z, Bajtoš P (2010) Magnesite and talc in Slovakia - genetic and geoenvironmental model. Miner Slovaca Monogr. pp 1–189. ISBN 978–80–89343–31–7

  • Rantitsch G, Grogger W, Teichert C, Ebner F, Hofer C, Maurer EM, Schaffer B, Toth M (2004) Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. Int J Earth Sci 93:959–973. doi:10.1007/s00531-004-0436-1

    Article  Google Scholar 

  • Rantitsch G, Bechtel A, Bojar AV (2010) Die kohlenstoffisotopen-zusammensetzung der graphite und semigraphite der östlichen grauwackenzone (ostalpen, österreich). Mitt Naturwiss Verein Steiermark 140:39–44

    Google Scholar 

  • Ratschbacher L (1987) Stratigraphy, tectonics and paleogeography of the Veitsch nappe /Graywacke Zone, Eastern Alps, Austria: A rearrangement. In: Flügel HW, Sassi FP, Grecula P (ed) Pre-Variscan and Variscan events in the Alpine Mediterranean mountain belts. Miner Slovaca Monogr, 407–414

  • Ratschbacher L, Klima K (1985) Übersicht über gesteinsbestand und metamorphose in einem querprofil vom altkristalin zur kalkalpenbasis (obersteirmark-österreich). Jb Geol B -A 128:151–173

    Google Scholar 

  • Redlich KA (1909) Die typen der magnesitlagerstätten. Z Prakt Geol 17:300–310

    Google Scholar 

  • Redlich KA (1935) Über einige wenig bekannte kristalline Magnesitlagerstätten Österreichs. Jb Geol B -A 85:101–113

    Google Scholar 

  • Roedder E (1958) Technique for the extraction and partial chemical analysis of fluid filled inclusions from minerals. Econ Geol 53:235–269

    Article  Google Scholar 

  • Roedder E, Ingram B, Hall WE (1963) Studies of fluid inclusions, III. Extraction and quantitative analysis of inclusions in the milligram range. Econ Geol 58:620–643

    Google Scholar 

  • Schroll E (2002) Genesis of magnesite deposits in the view of isotope geochemistry. Bol Paranaen Geociênc 50:59–68

    Google Scholar 

  • Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606. doi:10.1130/G24703a.1

    Article  Google Scholar 

  • Schuster R, Scharbert S, Abart R, Frank W (2001) Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine - Southalpine realm. Mitt Ges Geol Bergbaustud Österr 44:111–141

    Google Scholar 

  • Sholkovitz ER (1990) Rare-Earth elements in marine sediments and geochemical standards. Chem Geol 88:333–347. doi:10.1016/0009-2541(90)90097-Q

    Article  Google Scholar 

  • Sholkovitz ER, Piepgras DJ, Jacobsen SB (1989) The pore water chemistry of rare-earth elements in Buzzards Bay sediments. Geochim Cosmochim Acta 53:2847–2856. doi:10.1016/0016–7037(89)90162–2

    Article  Google Scholar 

  • Siegl W, Felser KO (1973) Der Kokardendolomit und seine Stellung im Magnesit von Hohentauern (Sunk bei Trieben). Berg- Hüttenmänn Monatsh 118:251–256

    Google Scholar 

  • Velasco F, Pesquera A, Arce R, Olmedo F (1987) A contribution to the ore genesis of the magnesite deposit of Eugui, Navarra (Spain). Mineral Deposita 22:33–41

    Article  Google Scholar 

  • Walter SHG (2001) 3D-Modellierung der Magnesitlagerstätte Hohentauern. Diploma thesis, Freie Universität Berlin

  • Weber L (1997) Metallogenetische Karte von Österreich (1: 500.000) und Handbuch der Lagerstätten der Erze, Industrieminerale und Energierohstoffe Österreichs. vol 19. Arch Lagerst forsch Geol B –A 19, 607 p

  • Wilson I, Ebner F (2005) A review of the world’s current and potential magnesite resources. Industrial Minerals Mag Min 1–41

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350. doi:10.1016/0009-2541(87)90012-X

    Article  Google Scholar 

Download references

Acknowledgments

Field-work was partially supported by the Austrian Academy of Sciences (Commission of Raw Material Research). The authors thank the last mine manager of the Hohentauern deposit DI H. Krisch for mine related information and logistic support. Dr. R. Bakker, Dr. W. Prochaska and Dr. H. Mali from the Department of Applied Geosciences and Geophysics supported this work by intensive discussion, help with analytical work and field assistance. Dr. U. Kloetzli (University of Vienna) gratefully performed the laser ablation analysis. Last but not at least we thank PhD M.T. Krupenin Yekaterinburg (Russian Acadademy of Sciences), Dipl. Eng. M. Radvanec, PhD. (State Geological Institute of Dionýz Štúr, Slovak Republic) and one anonymous reviewer for their critical reviews and fruitful comments. Editorial handling by J. G Raith is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir M. Azim Zadeh.

Additional information

Editorial handling: J. G. Raith

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azim Zadeh, A.M., Ebner, F. & Jiang, SY. Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): implications for a metasomatic genetic model. Miner Petrol 109, 555–575 (2015). https://doi.org/10.1007/s00710-015-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0386-2

Keywords

Navigation