Skip to main content

Advertisement

Log in

Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348

    PubMed  CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512–522. doi:10.1111/j.1365-313X.2004.02229.x

    PubMed  CAS  Google Scholar 

  • Ahn NG, Shabb JB, Old WM, Resing KA (2007) Achieving in-depth proteomics profiling by mass spectrometry. Acs Chem Biol 2:39–52

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515. doi:10.1126/science.1104812

    PubMed  CAS  Google Scholar 

  • Amanchy R, Kalume DE, Iwahori A, Zhong J, Pandey A (2005) Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res 4:1661–1671. doi:10.1021/Pr050134h

    PubMed  CAS  Google Scholar 

  • Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB (2000) Inhibition of RhoA by p120 catenin. Nat Cell Biol 2:637–644. doi:10.1038/35023588

    PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    PubMed  CAS  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310. doi:10.1126/science.1072104

    PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983. doi:10.1038/415977a

    PubMed  CAS  Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C et al (1984) DNA-sequence and expression of the B95–8 Epstein–Barr virus genome. Nature 310:207–211

    PubMed  CAS  Google Scholar 

  • Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    PubMed  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li JX, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135. doi:10.1073/pnas.0404720101

    PubMed  CAS  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214. doi:10.1074/mcp.M600429-MCP200

    PubMed  CAS  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435. doi:10.1146/annurev.biochem.73.011303.073651

    PubMed  CAS  Google Scholar 

  • Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24:168–200. doi:10.1002/mas.20015

    PubMed  CAS  Google Scholar 

  • Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND, Hay RT, Gu W, Pestell RG (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280:10264–10276. doi:10.1074/jbc.M408748200

    PubMed  CAS  Google Scholar 

  • Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A (1998) A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J 17:5964–5973. doi:10.1093/emboj/17.20.5964

    PubMed  CAS  Google Scholar 

  • Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    PubMed  CAS  Google Scholar 

  • Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, Deutsch EW, Panse C, de Lichtenberg U, Rinner O et al (2007) A high-quality catalog of the Drosophila melanogaster proteome. Nature Biotechnology 25:576–583

    PubMed  CAS  Google Scholar 

  • Chait BT, Chait BT (2006) Chemistry. Mass spectrometry: bottom-up or top-down? Science 314:65–66. doi:10.1126/science.1133987

    PubMed  CAS  Google Scholar 

  • Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765. doi:10.1038/ncb0805-758

    PubMed  CAS  Google Scholar 

  • Chen Y, Hoehenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone—responsive phosphoproteins in Arabidopsis thaliana using TiO2 phosphopeptide enrichment and MAPA. Plant J

  • Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JEP, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104:2193–2198. doi:10.1073/pnas.0607084104

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476. doi:10.1105/tpc.105.036574

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497. doi:10.1038/Nature05999

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. doi:10.1016/j.cell.2006.02.008

    PubMed  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. doi:10.1126/science.1175371

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    PubMed  CAS  Google Scholar 

  • Cohen P (1999) The Croonian Lecture (1999). Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos T Roy Soc B 354:485–495

    CAS  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25:596–601

    PubMed  CAS  Google Scholar 

  • Collins FS, Lander ES, Rogers J, Waterston RH, Conso IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. doi:10.1038/Nature03001

    Google Scholar 

  • Comon P (1994) Independent component analysis, a new concept. Signal Process 36:287–314

    Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    PubMed  CAS  Google Scholar 

  • Cubitt B, Oldstone C, Delatorre JC (1994) Sequence and genome organization of borna-disease virus. J Virol 68:1382–1396

    PubMed  CAS  Google Scholar 

  • de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1260

    PubMed  Google Scholar 

  • Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6:307–311. doi:10.1016/S1369-5266(03)00060-8

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM (1999) Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189:1815–1822

    PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG, Devoto A (2002) Protein complexes mediate signalling in plant responses to hormones, light, sucrose and pathogens. Plant Mol Biol 50:971–980

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479. doi:10.1038/nature02017

    PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    PubMed  CAS  Google Scholar 

  • Gallagher E, Gao M, Liu YC, Karin M (2006) Activation of the E3 ubiquitin ligase itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci USA 103:1717–1722. doi:10.1073/pnas.0510664103

    PubMed  CAS  Google Scholar 

  • Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL (2007) Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4:487–489. doi:10.1038/Nmeth1052

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741. doi:10.1038/nature02046

    PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521. doi:10.1038/Nature02426

    PubMed  CAS  Google Scholar 

  • Gimona M (2006) Protein linguistics—a grammar for modular protein assembly? Nat Rev Mol Cell Biol 7:68–73. doi:10.1038/nrm1785

    PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274:546, 563–567

    PubMed  CAS  Google Scholar 

  • Graumann J, Hubner NC, Kim JB, Ko K, Moser M, Kumar C, Cox J, Scholer H, Mann M (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7:672–683

    PubMed  CAS  Google Scholar 

  • Haas AL, Baboshina O, Williams B, Schwartz LM (1995) Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal-muscle. J Biol Chem 270:9407–9412

    PubMed  CAS  Google Scholar 

  • Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006

    PubMed  CAS  Google Scholar 

  • Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Humme J, Erban A, Sulpice R, Regierer B, Kopka J, Geigenberger P et al (2008) A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics 8:4214–4225

    PubMed  CAS  Google Scholar 

  • Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748. doi:10.1016/j.molcel.2006.02.018

    PubMed  CAS  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–177

    PubMed  CAS  Google Scholar 

  • Humphery-Smith I (2004) A human proteome project with a beginning and an end. Proteomics 4:2519–2521. doi:10.1002/pmic.200400866

    PubMed  CAS  Google Scholar 

  • Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738. doi:10.1016/j.molcel.2007.11.019

    PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses vapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    PubMed  CAS  Google Scholar 

  • Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa Y (2009) Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. J Exp Bot 60:3067–3073. doi:10.1093/jxb/erp134

    PubMed  CAS  Google Scholar 

  • Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105. doi:10.1146/annurev.genet.40.110405.090431

    PubMed  CAS  Google Scholar 

  • Jiang X, Sun Y, Chen S, Roy K, Price BD (2006) The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J Biol Chem 281:15741–15746. doi:10.1074/jbc.M513172200

    PubMed  CAS  Google Scholar 

  • Johnson JM, Castle J, Garrett-Engele P, Kan ZY, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    PubMed  CAS  Google Scholar 

  • Jongeneel CV, Delorenzi M, Iseli C, Zhou DX, Haudenschild CD, Khrebtukova I, Kuznetsov D, Stevenson BJ, Strausberg RL, Simpson AJG et al (2005) An atlas of human gene expression from massively parallel signature sequencing (MPSS). Genome Res 15:1007–1014

    PubMed  CAS  Google Scholar 

  • Jungblut PR, Holzhutter HG, Apweiler R, Schluter H (2008) The speciation of the proteome. Chem Cent J 2:16

    PubMed  Google Scholar 

  • Jungblut PR, Schiele F, Zimny-Arndt U, Ackermann R, Schmid M, Lange S, Stein R, Pleissner KP (2010) Helicobacter pylori proteomics by 2-DE/MS, 1-DE-LC/MS and functional data mining. Proteomics 10:182–193. doi:10.1002/pmic.200900361

    PubMed  CAS  Google Scholar 

  • Karin M (1999) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18:6867–6874. doi:10.1038/sj.onc.1203219

    PubMed  CAS  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    PubMed  CAS  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    CAS  Google Scholar 

  • Kempa S, Rozhon W, Samaj J, Erban A, Baluska F, Becker T, Haselmayer J, Schleiff E, Kopka J, Hirt H et al (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090. doi:10.1111/j.1365-313X.2006.03025.x

    PubMed  CAS  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900. doi:10.1111/j.1365-313X.2005.02420.x

    PubMed  CAS  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618. doi:10.1016/j.molcel.2006.06.026

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18:2401–2410. doi:10.1093/emboj/18.9.2401

    PubMed  CAS  Google Scholar 

  • Klose J, Kobalz U (1995) 2-Dimensional electrophoresis of proteins—an updated protocol and implications for a functional-analysis of the genome. Electrophoresis 16:1034–1059

    PubMed  CAS  Google Scholar 

  • Koepp DM, Harper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97:431–434

    PubMed  CAS  Google Scholar 

  • Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720. doi:10.1038/27240

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  • Larsen MR, Larsen PM, Fey SJ, Roepstorff P (2001) Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 22:566–575

    PubMed  CAS  Google Scholar 

  • Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14:1017–1024. doi:10.1038/nsmb1307

    PubMed  CAS  Google Scholar 

  • Lizcano JM, Morrice N, Cohen P (2000) Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J 349:547–557

    PubMed  CAS  Google Scholar 

  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124. doi:10.1038/Nbt1270

    PubMed  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741. doi:10.1073/pnas.0502954102

    PubMed  CAS  Google Scholar 

  • MacCoss MJ, McDonald WH, Saraf A, Sadygov R, Clark JM, Tasto JJ, Gould KL, Wolters D, Washburn M, Weiss A et al (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 99:7900–7905

    PubMed  CAS  Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    PubMed  CAS  Google Scholar 

  • Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610. doi:10.1074/mcp.M600408-MCP200

    PubMed  CAS  Google Scholar 

  • Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    PubMed  CAS  Google Scholar 

  • Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4:82–89

    PubMed  CAS  Google Scholar 

  • Meskiene I, Bogre L, Glaser W, Balog J, Brandstotter M, Zwerger K, Ammerer G, Hirt H (1998) MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA 95:1938–1943

    PubMed  CAS  Google Scholar 

  • Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL, Jelinek H, Hirt H (2003) Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem 278:18945–18952. doi:10.1074/jbc.M300878200

    PubMed  CAS  Google Scholar 

  • Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE et al (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3:RESEARCH0083

    PubMed  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214. doi:10.1126/science.1126867

    PubMed  CAS  Google Scholar 

  • Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564. doi:10.1038/ncb822ncb822

    PubMed  CAS  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204. doi:8395

    PubMed  CAS  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346. doi:10.1016/j.tplants.2005.05.009

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088

    PubMed  CAS  Google Scholar 

  • Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405. doi:10.1105/tpc.104.023150

    PubMed  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940. doi:10.1111/j.1365-313X.2007.03192.x

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10:296–303

    PubMed  Google Scholar 

  • Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    PubMed  CAS  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3. doi:10.1126/scisignal.2000475

  • Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5:1338–1347

    PubMed  CAS  Google Scholar 

  • Palmgren MG (2001) PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845. doi:10.1146/annurev.arplant.52.1.817

    PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047

    PubMed  CAS  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

    Google Scholar 

  • Peng JM, Schwartz D, Elias JE, Thoreen CC, Cheng DM, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926. doi:10.1038/Nbt849

    PubMed  CAS  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28. doi:10.1016/j.tplants.2006.11.005

    PubMed  CAS  Google Scholar 

  • Posern G, Miralles F, Guettler S, Treisman R (2004) Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23:3973–3983. doi:10.1038/sj.emboj.7600404

    PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    PubMed  CAS  Google Scholar 

  • Sabo A, Lusic M, Cereseto A, Giacca M (2008) Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol Cell Biol 28:2201–2212. doi:10.1128/MCB.01557-07

    PubMed  CAS  Google Scholar 

  • Scheler C, Muller EC, Stahl J, Muller-Werdan U, Salnikow J, Jungblut P (1997) Identification and characterization of heat shock protein 27 protein species in human myocardial two-dimensional electrophoresis patterns. Electrophoresis 18:2823–2831

    PubMed  CAS  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    PubMed  CAS  Google Scholar 

  • Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B (2008) An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 7:2138–2150

    PubMed  Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684

    PubMed  CAS  Google Scholar 

  • Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454

    PubMed  CAS  Google Scholar 

  • Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol. doi:10.1016/j.pbi.2009.12.008

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516. doi:10.1146/annurev-arplant-042809-112132

    PubMed  CAS  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F et al (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224. doi:10.1105/tpc.106.049585

    PubMed  CAS  Google Scholar 

  • Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483. doi:10.1038/nrm1960

    PubMed  CAS  Google Scholar 

  • Seo J, Lee KJ (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37:35–44

    PubMed  CAS  Google Scholar 

  • Shteinberg M, Protopopov Y, Listovsky T, Brandeis M, Hershko A (1999) Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochem Biophys Res Commun 260:193–198. doi:10.1006/bbrc.1999.0884

    PubMed  CAS  Google Scholar 

  • Sims RJ, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Bio 9:815–820. doi:10.1038/Nrm2502

    CAS  Google Scholar 

  • Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821. doi:10.1038/nmeth1097

    PubMed  CAS  Google Scholar 

  • Smallwood M, Bowles DJ (2002) Plants in a cold climate. Philos Trans R Soc Lond B Biol Sci 357:831–847. doi:10.1098/rstb.2002.1073

    PubMed  CAS  Google Scholar 

  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403. doi:10.1016/j.cell.2009.04.042

    PubMed  CAS  Google Scholar 

  • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026

    PubMed  CAS  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193. doi:10.1038/Msb.2008.32

    PubMed  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102:13182–13187. doi:10.1073/pnas.0504211102

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Soyano T, Sasabe M, Machida Y (2004) A MAP kinase cascade that controls plant cytokinesis. J Biochem 136:127–132. doi:10.1093/Jb/Mvh118

    PubMed  CAS  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818. doi:10.1105/tpc.106.046581

    PubMed  CAS  Google Scholar 

  • Thelemann A, Petti F, Griffin G, Iwata K, Hunt T, Settinari T, Fenyo D, Gibson N, Haley JD (2005) Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomics 4:356–376. doi:10.1074/mcp.M400118-MCP200

    PubMed  CAS  Google Scholar 

  • Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J et al (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11:308–315. doi:10.1038/nsmb740

    PubMed  CAS  Google Scholar 

  • Tress ML, Bodenmiller B, Aebersold R, Valencia A (2008) Proteomics studies confirm the presence of alternative protein isoforms on a large scale. Genome Biol 9:R162

    PubMed  Google Scholar 

  • Tsur D, Tanner S, Zandi E, Bafna V, Pevzner PA (2005) Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol 23:1562–1567

    PubMed  CAS  Google Scholar 

  • Usaite R, Wohlschlegel J, Venable JD, Park SK, Nielsen J, Olsson L, Yates JR (2008) Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 7:266–275. doi:10.1021/Pr700580m

    PubMed  CAS  Google Scholar 

  • van Bentem SD, Hirt H (2007) Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant Sci 12:404–411. doi:10.1016/j.tplants.2007.08.007

    Google Scholar 

  • Ventii KH, Wilkinson KD (2008) Protein partners of deubiquitinating enzymes. Biochem J 414:161–175. doi:10.1042/Bj20080798

    PubMed  CAS  Google Scholar 

  • Ventura JJ, Kennedy NJ, Lamb JA, Flavell RA, Davis RJ (2003) c-Jun NH(2)-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol Cell Biol 23:2871–2882

    PubMed  CAS  Google Scholar 

  • Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104:1488–1493. doi:10.1073/pnas.0609836104

    PubMed  CAS  Google Scholar 

  • Wang D, Baldwin AS Jr (1998) Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem 273:29411–29416

    PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. doi:10.1038/Nature01262

    PubMed  CAS  Google Scholar 

  • Wienkoop S, Larrainzar E, Niemann M, Gonzalez EM, Lehmann U, Weckwerth W (2006) Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics. J Sep Sci 29:2793–2801

    PubMed  CAS  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736. doi:10.1074/mcp.M700273-MCP200

    PubMed  CAS  Google Scholar 

  • Yang XJ (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662. doi:10.1038/sj.onc.1208173

    PubMed  CAS  Google Scholar 

  • Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461. doi:10.1016/j.molcel.2008.07.002

    PubMed  CAS  Google Scholar 

  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y (1998) Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396:590–594. doi:10.1038/25159

    PubMed  CAS  Google Scholar 

  • Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27:197–213. doi:10.1016/j.molcel.2007.05.033

    PubMed  CAS  Google Scholar 

  • Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151. doi:10.1016/j.molcel.2008.06.006

    PubMed  CAS  Google Scholar 

  • Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280. doi:10.1038/Nsmb.1554

    PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767. doi:10.1038/Nature02485

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter R Jungblut for his kind solicitation of the manuscript and for the many years of stimulating discussion. WH is generously supported by EraNet Plant Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoehenwarter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoehenwarter, W., Chen, Y., Recuenco-Munoz, L. et al. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Amino Acids 41, 329–341 (2011). https://doi.org/10.1007/s00726-010-0669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0669-1

Keywords

Navigation