Skip to main content
Log in

Dietary requirements of “nutritionally non-essential amino acids” by animals and humans

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Amino acids are necessary for the survival, growth, development, reproduction and health of all organisms. They were traditionally classified as nutritionally essential or non-essential for mammals, birds and fish based on nitrogen balance or growth. It was assumed that all “non-essential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and health. However, there has been no compelling experimental evidence to support this assumption over the past century. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and protect its mucosal integrity. Therefore, based on new research findings, NEAA should be taken into consideration in revising the classical “ideal protein” concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Amino acids

AMPK:

AMP-activated protein kinase

EAA:

Nutritionally essential amino acids

4EBP1:

Eukaryotic translation initiation factor 4E-binding protein-1

MTOR:

Mechanistic target of rapamycin

NEAA:

Nutritionally non-essential amino acids

NO:

Nitric oxide

NRC:

National Research Council

References

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  PubMed  CAS  Google Scholar 

  • Ball RO, Atkinson JL, Bayley HS (1986) Proline as an essential amino acid for the young pig. Br J Nutr 55:659–668

    Article  PubMed  CAS  Google Scholar 

  • Boutry C, Matsumoto H, Bos C et al (2012) Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids 43:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Brasse-Lagnel C, Lavoinne A, Husson A (2009) Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 276:1826–1844

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2010) Creatine metabolism and the urea cycle. Mol Genet Metab 100:S49–S52

    Article  PubMed  CAS  Google Scholar 

  • Bruhat A, Cherasse Y, Chaveroux C et al (2009) Amino acids as regulators of gene expression in mammals: molecular mechanisms. BioFactors 35:249–257

    Article  PubMed  CAS  Google Scholar 

  • Chiu M, Tardito S, Barilli A et al (2012) Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 43:2561–2567

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen C, Madsen AN, Smajilovic S et al (2012) l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids 43:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Zhang J, Wu G et al (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012c) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids. doi:10.1007/s00726-012-1264-4

    Google Scholar 

  • Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Nutr Metab Care 12:78–85

    Article  CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Reeds PJ (1993) Amino acid compositions of body and milk protein change during the suckling period in rats. J Nutr 23:947–956

    Google Scholar 

  • del Favero S, Roschel H, Artioli G et al (2012) Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. Amino Acids 42:2299–2305

    Article  PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Knabe DA, Mallick BK et al (2000) Postnatal changes of plasma amino acids in suckling pigs. J Anim Sci 78:2369–2375

    PubMed  CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE et al (2005) Mechanisms for dietary regulation of nitric oxide synthesis in mammals. In: Zempleni I, Dakshinamurti K (eds) Nutrients and cell signaling. Marcel Dekker, New York, pp 225–252

    Google Scholar 

  • Go GW, Wu G, Silvey DT et al (2012) Lipid metabolism in pigs fed supplemental conjugated linoleic acid and/or dietary arginine. Amino Acids 43:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, proteins, and amino acids. The National Academies Press, Washington, DC

    Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Jung YS, Kim SJ, Kwon DY et al (2012) Metabolic analysis of sulfur-containing substances and polyamines in regenerating rat liver. Amino Acids 42:2095–2102

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Baker DH, Easter RA (2001) Dynamic ideal protein and limiting amino acids for lactating sows: the impact of amino acid mobilization. J Anim Sci 79:2356–2366

    PubMed  CAS  Google Scholar 

  • Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner M, Fickler J, Roth FX (1995) Effect of dietary proline supply on N-balance of piglets. 3. Communication on the importance of non-essential amino acids for protein retention. J Anim Physiol Anim Nutr 73:57–65

    Article  CAS  Google Scholar 

  • Le Ple′nier S, Walrand S, Noirt R et al (2012) Effects of leucine and citrulline versus non-essential amino acids on muscle protein synthesis in fasted rat: a common activation pathway? Amino Acids 43:1171–1178

    Article  Google Scholar 

  • Lei J, Feng D, Zhang Y et al (2012) Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 43:2179–2189

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bazer FW, Gao H et al (2009) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhou Y, Liu SJ et al (2012) Characterization and dietary regulation of glutamate dehydrogenase in different ploidy fishes. Amino Acids 43:2339–2348

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (2012) Nutrient Requirements of swine. National Academy Press, Washington, DC

  • Obayashi Y, Arisaka H, Yoshida S et al (2012) Proline protects liver from D-galactosamine hepatitis by activating the IL-6/STAT3 survival signaling pathway. Amino Acids 43:2371–2380

    Article  PubMed  CAS  Google Scholar 

  • Oess S, Icking A, Fulton D et al (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396:401–409

    Article  PubMed  CAS  Google Scholar 

  • Peters V, Schmitt CP, Zschocke J et al (2012) Carnosine treatment largely prevents alterations of renal carnosine metabolism in diabetic mice. Amino Acids 42:2411–2416

    Article  PubMed  CAS  Google Scholar 

  • Ray RM, Viar MJ, Johnson LR (2012) Amino acids regulate expression of antizyme-1 to modulate ornithine decarboxylase activity. J Biol Chem 287:3674–3690

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840S

    PubMed  CAS  Google Scholar 

  • Ren W, Yin Y, Liu G et al (2012) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    Article  PubMed  CAS  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2012) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids. doi:10.1007/s00726-012-1420-x

    PubMed  Google Scholar 

  • Rhoads JM, Argenzio RA, Chen W et al (2000) Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 118:90–100

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Niu XM, Surendran S et al (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6k signaling. J Nutr 138:1652–1657

    PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2011) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

    Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Shi Z, Yuan B, Taylor AW et al (2012) Monosodium glutamate intake increases hemoglobin level over 5 years among Chinese adults. Amino Acids 43:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2009a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Li X, Wu G et al (2012) Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine. Amino Acids 43:2481–2489

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang JJ, Wu ZL, Li DF et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Suryawan A, Orellana RA et al (2011) Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids 40:157–165

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr. (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011a) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011b) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu ZL, Satterfield MC, Bazer FW et al (2012) Regulation of brown adipose tissue development and white fat reduction by l-arginine. Curr Opin Clin Nutr Metab Care 15:529–538

    Article  PubMed  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT et al (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578–597

    Article  PubMed  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL et al (2012) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23:1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yao K, Yin Y, Li X et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wu X, Yin Y et al (2012) Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats. Amino Acids 43:813–821

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratories was supported by National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120) and Animal Growth and Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, AHA (10GRNT4480020), Texas A&M AgriLife Research (H-8200), the National Natural Science Foundation of China (no. u0731001, 30810103902, 30928018, 30972156, 31172217 and 31272450), China Postdoctoral Science Foundation (2012T50163), Chinese Universities Scientific Funds (No. 2012RC024), and the Thousand-People Talent program at China Agricultural University. Important contributions of our graduate students and colleagues to the recent development of the field are gratefully appreciated.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Wu, Z., Dai, Z. et al. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44, 1107–1113 (2013). https://doi.org/10.1007/s00726-012-1444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1444-2

Keywords

Navigation