Skip to main content
Log in

Hydraulische Charakterisierung von Störungskernzonen in kristallinen Festgesteinen am Beispiel der Talhof-Störung (Ostalpen)

Hydraulic characterization of core zones in crystalline hard rocks at the Talhof fault (Eastern Alps)

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Zusammenfassung

Die hydrogeologische Beurteilung von Gebirgskörpern wird maßgeblich von Störungszonen beeinflusst, die als Wasserleiter, Barrieren oder einer Kombination von beiden auftreten. Der heterogene, strukturell komplexe Aufbau ergibt richtungsabhängige hydraulische Eigenschaften innerhalb der Störungszonen und ihrer strukturellen Einheiten (Domänen). An der Talhof-Störung (Semmering-Raxgebiet, Österreich) wurde der Internaufbau einer Kernzone, bestehend aus Kataklasiten und Kakiriten mit planarem Gefüge parallel zur Störungszone, in Bezug auf ihre hydraulischen Eigenschaften näher untersucht. Die Probennahme erfolgte mittels Stechzylindern in drei Raumrichtungen bezüglich eines kinematischen Koordinatensystems entlang einer Scan-Line. Des Weiteren wurden Korngrößenverteilung, Mineralbestand und hydraulische Durchlässigkeit (K-Werte) in triaxialen Durchlässigkeitszellen bestimmt. Die ermittelten K-Werte aller Proben liegen zwischen 1,7⋅10−7 m/s und 4,2⋅10−11 m/s. Die Untersuchungen ergaben, dass die Kernzone trotz des heterogenen, lagigen Internaufbaus im Millimeter- und Zentimetermaßstab hydraulisch homogen und anisotrop ist, wobei die K-Werte parallel zur Bewegungsrichtung um zwei Größenordnungen höher sind als normal dazu. Die Ergebnisse sind gut mit jenen von Packertests vergleichbar, die ebenfalls in Störungsgesteinen des Talhof-Störungssystems und der selben tektonischen Einheiten durchgeführt wurden, was Rückschlüsse auf die Störungsdomänen der Testintervalle ermöglicht.

Abstract

The hydrogeological assessment of a rock mass can be significantly influenced by fault zones acting either as conduits, barriers, or a combined conduit-barrier system. At the Talhof-fault (Semmering-Rax, Austria) the internal structure of a core zone with respect to the hydraulic properties was investigated and compared to results of packer tests. The fault rocks are built up by cataclasites and cacirites with a planar fabric parallel to the fault zone boundaries. Samples were taken with steel pipes in three orientations with reference to a kinematic coordinate system along a scan line. The samples were analysed with respect to grain size distribution, mineralogical composition and hydraulic conductivity. The hydraulic conductivity was determined in the laboratory with tri-axial penetration cells resulting in values ranging from 1,7⋅10−7 m/s to 4,2⋅10−11 m/s. The analyses suggest a homogeneous and anisotropic hydraulic behaviour of the core zone despite its heterogeneous, fine layered internal structure.

The hydraulic conductivity parallel to the fault plane is two orders of magnitude higher than normal to the fault plane. The results correspond well with data from packer tests also from fault rocks of the Talhof fault system and the same tectonic units, giving additional information about the fault domains within the test intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Alyamani, M.S., Sen, Z.: Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31, 551–555 (1993)

    Article  Google Scholar 

  • Antonellini, M., Aydin, A.: Effect of faulting on fluid flow in porous sandstones; petrophysical properties. AAPG Bull. 78, 355–377 (1994)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  • Billi, A., Salvini, F., Storti, F.: The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. J. Struct. Geol. 25, 1779–1794 (2003)

    Article  Google Scholar 

  • Blum, P., Mackay, R., Riley, M.S., Knight, J.L.: Hydraulische Modellierung und die Ermittlung des repräsentativen Elementarvolumens (REV) im Kluftgestein. Grundwasser 12, 48–65 (2007)

    Article  Google Scholar 

  • Boadu, F.K.: Hydraulic conductivity of soils from grain-size distribution; new models. J. Geotech. Geoenviron. Eng. 126, 739–746 (2000)

    Article  Google Scholar 

  • Boehmer, W.K., Boonsta, J.: Flow to wells in intrusive dikes. Ph.D. Dissertation, Vrije Universiteit Amsterdam, The Netherlands (1987)

  • Bourdet, D., Ayoub, J.A., Pirard, Y.M.: Use of pressure derivative in well test interpretation. SPE Pap. 12777(4), 431–441 (1984)

    Google Scholar 

  • Brodie, K., Fettes, D., Harte, B., Schmid, R.: Structural terms including fault rock terms. In: IUGS Subcommission on the Systematics of Metamorphic Rocks (2002)

  • Brosch, F.J., Kurz, W.: Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones: examples from the Eastern Alps. Geol. Soc. London Spec. Publ. 299, 75–95 (2008)

    Article  Google Scholar 

  • Bühler, Ch., Thut, A.: Hydraulische und felsmechanische Bohrlochversuche. In: Löw, O., Wyss, O. (Hrsg.) Vorerkundung und Prognose der Basistunnels. Balkema, Rotterdam (1999)

    Google Scholar 

  • Chakrabarty, C., Enachescu, C.: Using the deconvolution approach for slug test analysis: theory and application. Ground Water 35(5), 797–806 (1997)

    Article  Google Scholar 

  • Caine, J.S., Evans, J.P., Forster, C.B.: Fault zone architecture and permeability structure. Geology (Boulder) 24, 1025–1028 (1996)

    Article  Google Scholar 

  • Decker, K., Peresson, H., Faupl, P.: Die miozaene Tektonik der oestlichen Kalkalpen; Kinematik, Palaeospannungen und Deformationsaufteilung während der „lateralen Extrusion“ der Zentralalpen. Miocene tectonics in the eastern Limestone Alps; kinematics, paleostress and distribution of deformation during the lateral extrusion of the Central Alps. Jahrb. Geol. Bundesanst. Wien 137, 5–18 (1994)

    Google Scholar 

  • Evans, J.P., Forster, C.B., Goddard, J.V.: Permeability of fault-related rocks and implications for hydraulic structure of fault zones. J. Struct. Geol. 19, 1393–1404 (1997)

    Article  Google Scholar 

  • Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  • Frohlich, R.K., Fisher, J.J., Summerly, E.: Electric-hydraulic conductivity correlation in fractured crystalline bedrock: Central Landfill, Rhode Islands, USA. J. Appl. Geophys. 35, 249–259 (1996)

    Article  Google Scholar 

  • Gringarten, A.C., Bourdet, D.P., Landel, P.A., Kniazeff, V.J.: Comparison between different skin and wellbore storage type curves for early time transient analysis. SPE Pap. 8205(9), 11 (1979)

    Google Scholar 

  • Hausegger, S., Kurz, W., Rabitsch, R., Kiechl, E., Brosch, F.J.: Analysis of the internal structure of a carbonate damage zone: implication for the mechanisms of fault breccia formation and fluid flow. J. Struct. Geol (2009, in Druck)

  • Hazen, A.: Some physical properties of sands and gravels with special reference to their use in filtration. Ann. Rep. Mass. State Bd. Health 24, 241–556 (1893)

    Google Scholar 

  • Kiechl, E.: Die hydrogeologische Wirksamkeit von Störungen und Störungszonen am Beispiel der Talhofstörung (Ostalpen). Diplomarbeit an der TU Graz (2007)

  • Krumbein, W.C.: Size frequency distributions of sediments. J. Sediment. Petrol. 4, 65–77 (1934)

    Google Scholar 

  • Krumbein, W.C., Monk, G.D.: Permeability as a function of size parameters of unconsolidated sand. Trans. Am. Inst. Min. Metall. Eng. 151, 153–163 (1942)

    Google Scholar 

  • Lachassagne, P., Pinault, J.-L., Laporte, P.: Radon 222 emanometry: a relevant methodology for water well sitting in hard rocks. Water Resour. Res. 37, 333–341 (2001)

    Article  Google Scholar 

  • Lee, C., Farmer, I.: Fluid Flow in Discontinuous Rocks. Chapman & Hall, London (1993)

    Google Scholar 

  • Lee, S.H., Lough, M.F., Jensen, C.L.: Hierarchial modeling of flow in naturally fractured formations with multiple length scales. Water Resour. Res. 37, 443–456 (2001)

    Article  Google Scholar 

  • Linzer, H.G., Decker, K., Peresson, H., Dell’mour, R., Frisch, W.: Balancing lateral orogenic float of the Eastern Alps. Tectonophysics 354, 211–237 (2002)

    Article  Google Scholar 

  • Löw, S.: Groundwater hydraulics and environmental impacts of tunnels in crystalline rocks. In: 9th IAEG Congress—Engineering Geology for Developing Countries, Durban, South Africa, 2002

  • Maclay, R.W., Small, T.A.: Hydrostratigraphic subdivisions and fault barriers of the Edwards aquifer south central Texas, USA. J. Hydrology 61, 127–146 (1987)

    Article  Google Scholar 

  • Masch, F.D., Denny, K.T.: Grain size distribution and its effects on the permeability of unconsolidated sand. Water Resour. Res. 2, 665–677 (1966)

    Article  Google Scholar 

  • Mayer, A., May, W., Lukkarila, C., Diehl, J.: Estimaion of fault zone conductnace by calibration of a regional groundwater flow model: desert hot springs, California. Hydrogeol. J. 15, 1093–1106 (2007)

    Article  Google Scholar 

  • Neubauer, F., Genser, J., Handler, R.: The Eastern Alps; result of a two-stage collision process; Aspects of geology in Austria. Mitt. Österr. Geol. Ges. 92, 117–134 (2000)

    Google Scholar 

  • Neumann, S.P.: Trends prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13, 124–147 (2005)

    Article  Google Scholar 

  • NRC: Commitee on Fracture Characterization and Fluid Flow and National Research Council U.S.: Rock Fractures and Fluid Flow. National Academy Press, Washington (1996)

    Google Scholar 

  • ÖNORM B 4400: Erd- und Grundbau – Bodenklassifikation für bautechnische Zwecke und Methoden zum Erkennen von Bodengruppen (1978)

  • ÖNORM B 4422-1: Erd- und Grundbau – Untersuchungen von Bodenproben – Bestimmung der Wasserdurchlässigkeit – Laborprüfungen (1992)

  • Peres, A.M.M., Onur, M., Reynolds, A.C.: A new analysis procedure for determining aquifer properties from Slug test data. Water Resour. Res. 25(7), 1591–1602 (1989)

    Article  Google Scholar 

  • Petursson, G., Leist, B.: Kàrahnjùkar hydroelectric plant—headrace tunnel excavation by tunnel boring through fault zones. Felsbau Rock Soil Eng. 5, 71–76 (2006)

    Google Scholar 

  • Priest, S.D.: Discontinuity Analysis for Rock Engineering. Edmundsbury Press, Burgy St. Edmunds (1993)

    Google Scholar 

  • Ratschbacher, L.: Laterale Extrusion in den Ostalpen – Antriebsmechanismen, die Verbindung mit den Karpaten und das gravitative Potential eines Orogens: Einsichten aus klassischer Geologie, experimenteller Modellierung und Thermochronologie. Wasserkunde – Festschrift Ralph Benischke, SH. 3, S. 3–8 (1998)

  • Ratschbacher, L., Frisch, W., Linzer, H., Merle, O.: Lateral extrusion in the eastern alps, Part II: structural analysis. Tectonics 10(2), 257–271 (1991)

    Article  Google Scholar 

  • Reichl, P., Frieg, B., Domberger, G., Leis, A., Winkler, G.: Hydraulic borehole tests in combination with hydrochemical and isotopic water sampling. Felsbau (Rock Soil Eng.) 24, 30–38 (2006)

    Google Scholar 

  • Riedmüller, G., Brosch, F.J., Klima, K., Medley, E.: Engineering geological characterization of brittle faults and classification of fault rocks. Felsbau (Rock Soil Eng.) 19, 13–19 (2001)

    Google Scholar 

  • Singhal, B.B.S., Gupta, R.P.: Applied Hydrogeology in Fractured Rocks. Kluwer Academic, Dodrecht (1999)

    Google Scholar 

  • Stober, I.: Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen. Geol. Jahrb. C 42 (1986)

  • Storti, F., Billi, A., Salvini, F.: Particle size distributions in natural carbonate fault rocks; insights for non-self-similar cataclasis. Earth Planet. Sci. Lett. 206, 173–186 (2003)

    Article  Google Scholar 

  • Wang, M., Kulatilake, P.H.S.W., Narviaz, J.: Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer testand discrete fracture fluid flow modeling. Int. J. Rock Mech. Min. Sci. 39, 887–904 (2002)

    Article  Google Scholar 

  • Winkler, G., Kupfersberger, H., Strobl, E.: Estimating the change of fracture volume with depth at the Koralm Massif, Austria. In: Groundwater in Fractured Hard Rocks. IAH SP, Bd. 9, S. 163–176. Taylor & Francis, London (2007)

    Google Scholar 

  • Winkler, G., Poltnig, W., Schlamberger, J.: Hangtektonische und tektonische Beeinflussung des Grundwassersystems Sattnitz. In: Marschallinger, R., Wanker, W. (Hrsg.) Computeranwendungen in Hydrologie, Hydrogeologie und Geologie, S. 38–46. Wichmann, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerfried Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, G., Kurz, W., Hergarten, S. et al. Hydraulische Charakterisierung von Störungskernzonen in kristallinen Festgesteinen am Beispiel der Talhof-Störung (Ostalpen). Grundwasser 15, 59–68 (2010). https://doi.org/10.1007/s00767-009-0130-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-009-0130-0

Keywords

Navigation