Skip to main content
Log in

Uncertainty quantification of Delft catamaran resistance, sinkage and trim for variable Froude number and geometry using metamodels, quadrature and Karhunen–Loève expansion

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

A framework for assessing convergence and validation of non-intrusive uncertainty quantification (UQ) methods is studied and applied to a complex industrial problem in ship design, namely the high-speed Delft Catamaran advancing in calm water, with variable Froude number and geometry. Relationship between UQ studies and deterministic verification and validation is discussed. Computations are performed using high- (URANS) and low- (potential flow) fidelity simulations. Froude number has expected value and standard deviation equal to 0.5 and 0.05, respectively, on a truncated normal distribution. Geometric uncertainty is related to the research space of a simulation-based design optimization, and assessed through the Karhunen–Loève expansion (KLE). Monte Carlo method with Latin hypercube sampling (MC-LHS) is used to compute expected value, standard deviation, distribution and uncertainty intervals for resistance, sinkage and trim. MC-LHS with CFD is used as a benchmark for validating less costly UQ methods, including MC-LHS with metamodels and standard quadrature formulas. Gaussian quadrature is found the most efficient method; however, MC-LHS with metamodels is preferred since provides with confidence intervals and distributions in a straightforward way and at reasonably small computational cost. UQ results are compared to earlier deterministic single- and multi-objective optimization; reduced-dimensional KLE studies for geometric variability indicate that stochastic optimization would not be of great benefit for the present problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Campana EF, Peri D, Tahara Y, Stern F (2006) Shape optimization in ship hydrodynamics using computational fluid mechanics. Comput Methods Appl Mech Eng 196(1–3):634–651. doi:10.1016/j.cma.2006.06.003

    Google Scholar 

  2. Campana EF, Peri D, Kandasamy M, Tahara Y, Stern F (2009) Numerical optimization methods for ship hydrodynamic design, SNAME annual meeting, Providence (Rhode Island, USA)

  3. Kandasamy M, Peri D, Tahara Y, Wilson W, Miozzi M, Georgiev S, Milanov E, Campana EF, Stern F (2013) Simulation based design optimization of waterjet propelled Delft catamaran. Int Shipbuild Prog 60:277–308. doi:10.3233/ISP-130098

    Google Scholar 

  4. Kandasamy M, He W, Takai T, Tahara Y, Peri D, Campana EF, Wilson W, Stern F (2011) Optimization of waterjet propelled high speed ships—JHSS and Delft Catamaran. In: 11th international conference on fast sea transportation, FAST 2011, Honolulu

  5. Tahara Y, Hino T, Kandasamy M, He W, Stern F (2011) CFD-based multiobjective optimization of waterjet propelled high speed ships. In: 11th international conference on fast sea transportation, FAST 2011, Honolulu

  6. Beyer HG, Sendhofff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218. doi:10.1016/j.cma.2007.03.003

    Google Scholar 

  7. Du X, Chen W (2000) Methodology for managing the effect of uncertainty in simulation-based design. AIAA J 38(8):1471–1478. doi:10.2514/2.1125

  8. Papanikolaou A (ed) (2009) Risk-based ship design—methods, tools and applications. Springer Publ, Berlin

    Google Scholar 

  9. Nowacki H (2011) Design decision modeling for multidisciplinary transport system. NATO RTO workshop AVT-173 on virtual prototyping of affordable military vehicles using advanced MDO. Sophia, Bulgaria

    Google Scholar 

  10. Diez M, Peri D (2010) Robust optimization for ship conceptual design. Ocean Eng 37(11–12):966–977. doi:10.1016/j.oceaneng.2010.03.010

    Google Scholar 

  11. Diez M, Peri D, Fasano G, Campana EF (2012) Hydroelastic optimization of a keel fin of a sailing boat: a multidisciplinary robust formulation for ship design. Struct Multidiscipl Optim 46:613–625. doi:10.1007/s00158-012-0783-7

    Article  Google Scholar 

  12. Campana EF, Liuzzi G, Lucidi S, Peri D, Piccialli V, Pinto A (2009) New global optimization methods for ship design problems. Optim Eng 10(4):533–555. doi:10.1007/s11081-009-9085-3

    Google Scholar 

  13. Hirsch C (2007) Non-deterministic simulation for CFD-based design methodologies. In: Proceedings of NATO RTO-AVT-147 symposium on computational uncertainty in military vehicle design, paper no. 29, Athens, Greece, 3–6 Dec 2007

  14. Evans TP, Tattersall P, Doherty JJ (2007) Identification and quantification of uncertainty sources in aircraft related CFD computations—an industrial perspective. In: Proceedings of NATO RTO-AVT-147 symposium on computational uncertainty in military vehicle design, paper no. 6, Athens, Greece, 3–6 Dec 2007

  15. Couaillier V, Delbos M (2007) Accurate boundary conditions with classical high order CFD methods. In: Proceedings of NATO RTO-AVT-147 symposium on computational uncertainty in military vehicle design, paper no. 29, Athens, Greece, 3–6 Dec 2007

  16. Peter J, Lazareff M, Couaillier V (2010) Verification, validation and error estimation in CFD for compressible flows. Int J Eng Syst Modell Simul 2(1/2):75–86

    Google Scholar 

  17. Mousaviraad MS, He W, Diez M, Stern F (2013) Framework for convergence and validation of stochastic UQ and relationship to deterministic V&V with example for a unit problem. Int J Uncertain Quant 3(5):371–395

    Article  MathSciNet  Google Scholar 

  18. Najm H (2009) Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu Rev Fluid Mech 41:35–52

    Article  MathSciNet  Google Scholar 

  19. Knio O, Le Maître O (2006) Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn Res 38:616–640

    Article  MATH  Google Scholar 

  20. Hosder S, Walters RW, Balch M (2010) Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA J 48(12):2721–2730. doi:10.2514/1.39389

    Google Scholar 

  21. Simon F, Guillen P, Sagaut P, Lucor D (2010) A gPC-based approach to uncertain transonic aerodynamics. Comput Methods Appl Mech Eng 199:1091–1099

    Article  MATH  MathSciNet  Google Scholar 

  22. Roy C, Oberkampf W (2011) A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput Methods Appl Mech Eng 200:2131–2144

    Article  MATH  MathSciNet  Google Scholar 

  23. Carrica PM, Huang J, Noack R, Kaushik D, Smith B, Stern F (2010) Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant. Comput Fluids 39(7):1095–1111

    Article  MATH  Google Scholar 

  24. Bassanini P, Bulgarelli UP, Campana EF, Lalli F (1994) The wave resistance problem in a boundary integral formulation. Surv Math Ind 4:151–194

    Google Scholar 

  25. Witteveen JAS, Doostan A, Chantrasmi T, Pecnik R, Iaccarino G (2009) Comparison of stochastic collocation methods for uncertainty quantification of the transonic RAE 2822 airfoil. In: Proceedings of workshop on quantification of CFD uncertainties

  26. Forbes C, Evans M, Hastings N, Peacock B (2011) Statistical distributions. Wiley, New Jersey

    MATH  Google Scholar 

  27. Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modeling criteria. Struct Multidiscip Optim 23:1–13

    Article  Google Scholar 

  28. He W, Diez M, Peri D, Campana E, Tahara Y, Stern F (2013) URANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometry. Ocean Eng. doi:10.1016/j.oceaneng.2013.06.020

  29. Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fennicae Ser A 34:7–79

    Google Scholar 

  30. Loève M (1945) Fonctions aléatoire de second ordre. Compte Rend Acad Sci (Paris) 220

  31. Borzì A, Schulz V, Schillings C, von Winckel G (2010) On the treatment of distributed uncertainties in PDE constrained optimization. GAMM-Mitteilungen 33(2):230–246. doi:10.1002/gamm.201010017

    Google Scholar 

  32. Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  33. Diez M, Campana EF, Stern F (2012) Karhunen–Loève expansion for assessing stochastic subspaces in geometry optimization and geometric uncertainty quantification. IIHR technical report no. 481

  34. Stern F, Wilson R, Shao J (2006) Quantitative approach to V&V of CFD simulations and certification of CFD codes. Int J Numer Meth Fluids 50:1335–1355

    Article  MATH  Google Scholar 

  35. Coleman HW, Stern F (1997) Uncertainties and CFD code validation. J Fluids Eng 119(4):795–803

    Article  Google Scholar 

  36. Xing T, Stern F (2010) Factors of safety for Richardson extrapolation. J Fluids Eng 132(6):061403. doi:10.1115/1.4001771

    Google Scholar 

  37. Stern F, Wilson RV, Coleman HW, Paterson EG (2001) Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures. ASME J Fluids Eng 123(4):793–802

    Article  Google Scholar 

  38. Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81:23–69

    Article  Google Scholar 

  39. Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, Berlin

  40. Ochi MK (1990) Applied probability and stochastic processes in engineering and physical sciences. Wiley, New York

    MATH  Google Scholar 

  41. Bendat JS, Piersol AG (1966) Measurement and analysis of random data. Wiley, New York

    MATH  Google Scholar 

  42. Raphael CER (1974) A class of local interpolating splines. In: Barnhill RE, Riesenfeld RF (eds) Computer aided geometric design. Academic Press, New York

    Google Scholar 

  43. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, pp 517–524. doi:10.1145/800186.810616

  44. Witteveen JAS, Bijl H (2012) Transonic velocity fluctuations simulated using extremum diminishing uncertainty quantification based on inverse distance weighting. Theoret Comput Fluid Dyn 26:459–479

    Article  Google Scholar 

  45. Roux WJ, Stander N, Haftka RT (1998) Response surface approximations for structural approximations. Int J Numer Meth Eng 42:517–534

    Article  MATH  Google Scholar 

  46. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York (ISBN: 978-0486612720, MR0167642)

    Google Scholar 

  47. Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

  48. Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia

  49. Atkinson KE (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York. ISBN: 978-0-471-50023-0.

  50. Hosder S, Walters RW, Perez R (2006) A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: Proceedings of 44th AIAA aerospace sciences meeting and exhibit, paper no. 2006–891, Reno, NV, 9–12 Jan 2006

  51. Witteveen JAS, Iaccarino G (2012) Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM J Sci Comput 34(3):A1522–A1543

    Article  MATH  MathSciNet  Google Scholar 

  52. Iaccarino G (2009) Quantification of uncertainty in flow simulations using probabilistic, methods, RTO-EN-AVT-162, Sept. 2009

  53. Kreyszig E (1993) Advanced engineering mathematics. Wiley, New York

    MATH  Google Scholar 

  54. O’Hagan A (2006) Bayesian analysis of computer code outputs: a tutorial. Reliab Eng Syst Saf 91:1290–1300

    Article  Google Scholar 

  55. Kennedy MC, Anderson CW, Conti S, O’Hagan A (2006) Case studies in Gaussian process modelling of computer codes. Reliab Eng Syst Saf 91:1301–1309

    Article  Google Scholar 

  56. Liang B, Mahadevan S (2011) Error and uncertainty quantification and sensitivity analysis in mechanics computational models. Int J Uncertain Quant 1(2):147–161

    Article  MathSciNet  Google Scholar 

  57. Larsson L, Stern F, Visonneau M (2011) CFD in ship hydrodynamics—results of the gothenburg 2010 workshop. In: Proceedings of the IV international conference on computational methods in marine engineering, Lisbon, Portugal, September 2011, pp 28–30

Download references

Acknowledgments

The present research is supported by the Office of Naval Research, Grant N00014-11-10237 and NICOP Grant N62909-11-17011, under the administration of Dr. Ki-Han Kim. The URANS computations were performed at the NAVY DoD Supercomputing Resource Center. Dr. Patrick Purtell provided support for the precursory research. The research was conducted in collaboration with NATO AVT-191: Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Stern.

About this article

Cite this article

Diez, M., He, W., Campana, E.F. et al. Uncertainty quantification of Delft catamaran resistance, sinkage and trim for variable Froude number and geometry using metamodels, quadrature and Karhunen–Loève expansion. J Mar Sci Technol 19, 143–169 (2014). https://doi.org/10.1007/s00773-013-0235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-013-0235-0

Keywords

Navigation