Skip to main content
Log in

Characteristics of age-related changes in bone compared between male and female reference Chinese populations in Hong Kong: a pQCT study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

There have been few comprehensive studies on the age-related changes in bone mineral density (BMD) and bone structure in Chinese people. Using peripheral quantitative computed tomography (pQCT), we assessed volumetric BMD of both trabecular and cortical bone and their geometry at both radius and tibia in 620 Chinese men and 638 women, aged 20–98 years, in Hong Kong. Cortical BMD did not start declining until after the age of 50 years in women and the age of 60 years in men. In contrast, trabecular BMD declined with age starting from adulthood in both sexes, and the rates of decline accelerated after the age of 50 years only in women. The integral and trabecular bone area expanded with age in older men and women, primarily at the tibia. Cortical bone area decreased significantly in older women, particularly at the tibia, while it decreased only slightly with aging in men. The moment of inertia decreased with age at the radius in older men and women. At the tibia, age-related decline accelerated in older women, but not in older men. It was concluded that trabecularization of bone in response to declining BMD and mechanical loading may be maladaptive by reducing cortical bone area, if periosteal apposition cannot keep pace with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Report of a WHO Scientific Group. WHO Technical Report Series No. 921

  2. Genant HK, Jiang YB (2007) Perspectives on advances in bone imaging for osteoporosis. In: Qin L, Genant HK, Griffith J, Leung KS (eds) Advanced bioimaging technologies in assessment of quality of bone and scaffold biomaterials. Springer, Berlin, pp 5–26

    Chapter  Google Scholar 

  3. Grampp S, Jergas M, Gluer CC, Lang P, Brastow P, Genant HK (1993) Radiologic diagnosis of osteoporosis. Current methods and perspectives. Radiol Clin North Am 31:1133–1145

    CAS  PubMed  Google Scholar 

  4. Gluer CC, Jergas M, Hans D (1997) Peripheral measurement techniques for the assessment of osteoporosis. Semin Nucl Med 27:229–247

    Article  CAS  PubMed  Google Scholar 

  5. Qin L, Au SK, Chan KM, Lau MC, Woo J, Dambacher MA, Leung PC (2000) Peripheral volumetric bone mineral density in pre- and post-menopausal Chinese women in Hong Kong. Calcif Tissue Int 67:29–36

    Article  CAS  PubMed  Google Scholar 

  6. Qin L, Au SK, Leung PC, Lau MC, Woo J, Choy WY, Hung WY, Dambacher MA, Leung SK (2002) Baseline BMD and bone loss at distal radius measured by peripheral quantitative computed tomography in peri- and post-menopausal Hong Kong Chinese women. Osteoporos Int 13:962–970

    Article  CAS  PubMed  Google Scholar 

  7. Lau EM, Lee JK, Suriwongpaisal P, Saw SM, Das De S, Khir A, Sambrook P (2001) The incidence of hip fracture in four Asian countries: the Asian Osteoporosis Study (AOS). Osteoporos Int 12:239–243

    Article  CAS  PubMed  Google Scholar 

  8. Lau EM, Lynn H, Woo J, Melton LJ 3rd (2003) Areal and volumetric bone density in Hong Kong Chinese: a comparison with Caucasians living in the United States. Osteoporos Int 14:583–588

    Article  CAS  PubMed  Google Scholar 

  9. Wong YS, Woo J, Li CK, Li M, Yeung F, Lum CM, Chan WK, Choi TK (2008) Maximum oxygen uptake and body composition of healthy Hong Kong Chinese adult men and women ages 20–64. J Sports Sci 26:295–302

    Article  PubMed  Google Scholar 

  10. Kin CF, Shan WS, Shun LJ, Chung LP, Jean W (2007) Experience of famine and bone health in post-menopausal women. Int J Epidemiol 36:1143–1150

    Article  PubMed  Google Scholar 

  11. Lau EM, Leung PC, Kwok T, Woo J, Lynn H, Orwoll E, Cummings S, Cauley J (2006) The determinants of bone mineral density in Chinese men—results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos Int 17:297–303

    Article  CAS  PubMed  Google Scholar 

  12. Ferretti JL (2000) Peripheral quantitative computed tomography for evaluating structural and mechanical properties of small bone. In: An YH, Draughn RA (eds) Mechanical testing of bone and the bone–implant interface. CRC Press, Boca Raton

    Google Scholar 

  13. Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodelling of the human femur and tibia with aging. Science 217:945–948

    Article  CAS  PubMed  Google Scholar 

  14. Hormone supplement therapy (2006). http://www.union.org/new/tc_chi/health_info/health_articles_gyn1.htm. Assessed January 30, 2008

  15. U.S. Department of Health and Human Services (2001) What is menopause. [Online exclusive]. Menopause: one woman’s story, every woman’s story. Retrieved January 30, 2008. http://www.niapublications.org/pubs/menopause/menopause.pdf

  16. Kroger H, Lunt M, Reeve J, Dequeker J, Adams JE et al (1999) Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European Quantitation of Osteoporosis study. Calcif Tissue Int 64:191–199

    Article  CAS  PubMed  Google Scholar 

  17. Compare Regression Coefficients (n.d.). http://www.spsstools.net/Syntax/RegressionRepeatedMeasure/CompareRegressionCoefficients.txt. Accessed 24 April 2007

  18. Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538

    Article  CAS  PubMed  Google Scholar 

  19. Butz S, Wüster C, Scheidt-Nave C, Gotz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int 4:179–184

    Article  CAS  PubMed  Google Scholar 

  20. Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6:355–360

    Article  CAS  PubMed  Google Scholar 

  21. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  CAS  PubMed  Google Scholar 

  22. Neu CM, Manz F, Rauch F, Merkel A, Schoenau E (2001) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone (NY) 28:227–232

    CAS  Google Scholar 

  23. Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: normative values for the 2–20-year-old population. Bone (NY) 16:393S–399S

    CAS  Google Scholar 

  24. Dealing with Menopause (2006). http://www.fhs.gov.hk/textonly/english/health_info/class_life/woman/woman_wm_menopause_dm1.html

  25. Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D, European Male Aging Study Group (2008) Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab 93:2737–2745

    Article  CAS  PubMed  Google Scholar 

  26. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    Article  CAS  PubMed  Google Scholar 

  27. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K (1995) Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80:3689–3698

    Article  CAS  PubMed  Google Scholar 

  28. Bilezikian JP, Morishima A, Bell J, Grumbach MM (1998) Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 339:599–603

    Article  CAS  PubMed  Google Scholar 

  29. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpson ER (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95

    Article  CAS  PubMed  Google Scholar 

  30. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  31. Orwoll ES (1996) Androgens as anabolic agents for bone. Trends Endocrinol Metab 7:77–84

    Article  CAS  PubMed  Google Scholar 

  32. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122

    Article  CAS  PubMed  Google Scholar 

  33. Frost HM (1999) On the estrogen–bone relationship and postmenopausal bone loss: a new model. J Bone Miner Res 14:1473–1477

    Article  CAS  PubMed  Google Scholar 

  34. Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  CAS  PubMed  Google Scholar 

  35. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  CAS  PubMed  Google Scholar 

  36. Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17:264–269

    Article  CAS  PubMed  Google Scholar 

  37. Brinkmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610

    Article  Google Scholar 

  38. Mosekilde L (2000) Age-related changes in bone mass, structure, and strength-effects of loading. Z Rheumatol 59:I1–I9

    Article  Google Scholar 

  39. Kaptoge S, Dalzell N, Folkerd E, Doody D, Khaw KT, Beck TJ, Loveridge N, Mawer eB, Berry JL, Shearer MJ, Dowsett M, Reeve J (2007) Sex hormone status may modulate rate of expansion of proximal femur diameter in older women alongside other skeletal regulators. J Clin Endocrinol Metab 92:304–313

    Article  CAS  PubMed  Google Scholar 

  40. Power J, Loveridge N, Lyon A, Rushton N, Parker M, Reeve J (2005) Osteoclastic cortical erosion as a determinant of subperiosteal osteoblastic bone formation in the femoral neck’s response to BMU imbalance. Effects of stance-related loading and hip fracture. Osteoporos Int 16:1049–1056

    Article  CAS  PubMed  Google Scholar 

  41. Kaptoge S, Dalzell N, Jakes RW, Wareham N, Day NE, Khaw KT, Beck TJ, Loveridge N, Reeve J (2003) Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int 14:941–949

    Article  CAS  PubMed  Google Scholar 

  42. Jiang Y, Zhao J, Rosen C, Geusens P, Genant HK (1999) Perspectives on bone mechanical properties and adaptive response to mechanical challenge. J Clin Densitom 2:423–433

    Article  CAS  PubMed  Google Scholar 

  43. Martin RB, Burr DB (1989) Structure, function and adaptation of compact bone. Raven Press, New York

    Google Scholar 

  44. Woo J, Kwok T, Lau E, Li M, Yu LM (1998) Body composition in Chinese subjects: relationship with age and disease. Arch Gerontol Geriatr 26:23–32

    Article  CAS  PubMed  Google Scholar 

  45. Thomas GN, McGhee SM, Schooling M, Ho SY, Lam KS, Janus ED, Lam TH (2006) Impact of sex-specific body composition on cardiovascular risk factors: The Hong Kong Cardiovascular Risk Factor Study. Metabolism 55:563–569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all participants dedicated to contributing to the study and The Chinese University of Hong Kong Jockey Club Centre for Osteoporosis Care and Control for supporting the study. Work was supported by National Institutes of Health R01 grant AR049439–01A1 and Research Grants Council Earmarked Grant CUHK4101/02 M.

Conflict of interest statement

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Y. Kwok.

About this article

Cite this article

Yuen, K.W.K., Kwok, T.C.Y., Qin, L. et al. Characteristics of age-related changes in bone compared between male and female reference Chinese populations in Hong Kong: a pQCT study. J Bone Miner Metab 28, 672–681 (2010). https://doi.org/10.1007/s00774-010-0170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0170-7

Keywords

Navigation