Skip to main content
Log in

The mechanism of formate oxidation by metal-dependent formate dehydrogenases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C–H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

ES:

Enzyme–substrate

Fdh:

Formate dehydrogenase

PDB:

Protein Data Bank

SeCys:

Selenocysteine

Si :

Inorganic sulfur atom

Tris–HCl:

Tris(hydroxymethyl)aminomethane hydrochloride

References

  1. Alberty RA (2001) Arch Biochem Biophys 389:94–109

    Article  PubMed  CAS  Google Scholar 

  2. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  3. Richardson DJ (2000) Microbiology 146(3):551–571

    PubMed  CAS  Google Scholar 

  4. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305–1308

    Article  PubMed  CAS  Google Scholar 

  5. Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998) Biochemistry 37:3518–3528

    Article  PubMed  CAS  Google Scholar 

  6. Jormakka M, Tornroth S, Byrne B, Iwata S (2002) Science 295:1863–1868

    Article  PubMed  Google Scholar 

  7. Jormakka M, Tornroth S, Abramson J, Byrne B, Iwata S (2002) Acta Crystallogr D Biol Crystallogr 58:160–162

    Article  PubMed  Google Scholar 

  8. Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC, Sun PD (1996) J Biol Chem 271:8095–8100

    Article  PubMed  CAS  Google Scholar 

  9. Moura JJ, Brondino CD, Trincao J, Romao MJ (2004) J Biol Inorg Chem 9:791–799

    Article  PubMed  CAS  Google Scholar 

  10. Brondino CD, Rivas MG, Romao MJ, Moura JJ, Moura I (2006) Acc Chem Res 39:788–796

    Article  PubMed  CAS  Google Scholar 

  11. Raaijmakers H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJ, Romao MJ (2001) J Biol Inorg Chem 6:398–404

    Article  PubMed  CAS  Google Scholar 

  12. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romao MJ (2002) Structure 10:1261–1272

    Article  PubMed  CAS  Google Scholar 

  13. Raaijmakers HC, Romao MJ (2006) J Biol Inorg Chem 11:849–854

    Article  PubMed  CAS  Google Scholar 

  14. Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) J Biol Chem 2:198–208

    CAS  Google Scholar 

  15. Rivas MG, Gonzalez PJ, Brondino CD, Moura JJ, Moura I (2007) J Inorg Biochem 101:1617–1622

    Article  PubMed  CAS  Google Scholar 

  16. Leopoldini M, Chiodo SG, Toscano M, Russo N (2008) Chemistry 14:8674–8681

    Article  PubMed  CAS  Google Scholar 

  17. Liu MC, Peck HD Jr (1981) J Biol Chem 256:13159–13164

    PubMed  CAS  Google Scholar 

  18. Legall J, Mazza G, Dragoni N (1965) Biochim Biophys Acta 99:385–387

    PubMed  CAS  Google Scholar 

  19. Mota CS, Valette O, Gonzalez PJ, Brondino CD, Moura JJG, Moura I, Dolla A, Rivas MG (2010) J Bacteriol 193:2917–2923

    Article  Google Scholar 

  20. Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJ, Moura I (1999) Biochemistry 38:16366–16372

    Article  PubMed  CAS  Google Scholar 

  21. Roux B (1995) Comput Phys Commun 91:275–282

    Article  CAS  Google Scholar 

  22. Ensing B, De Vivo M, Liu Z, Moore P, Klein ML (2006) Acc Chem Res 39:73–81

    Article  PubMed  CAS  Google Scholar 

  23. Huber T, Torda AE, van Gunsteren WF (1994) J Comput Aided Mol Des 8:695–708

    Article  PubMed  CAS  Google Scholar 

  24. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562–12566

    Article  PubMed  CAS  Google Scholar 

  25. Berg BA, Neuhaus T (1991) Phys Lett B 267:249–253

    Article  Google Scholar 

  26. Ramos MJ, Fernandes PA (2008) Acc Chem Res 41:689–698

    Article  CAS  Google Scholar 

  27. Castillo R, Oliva M, Marti S, Moliner V (2008) J Phys Chem B 112:10012–10022

    Article  PubMed  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  31. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  32. Cerqueira NM, Fernandes PA, Eriksson LA, Ramos MJ (2006) Biophys J 90:2109–2119

    Article  PubMed  CAS  Google Scholar 

  33. Cerqueira NMFSA, Fernandes PA, Eriksson LA, Ramos MJ (2004) J Mol Struct Theochem 709:53–65

    Article  CAS  Google Scholar 

  34. Himo F (2006) Theor Chem Acc 116:232–240

    Article  CAS  Google Scholar 

  35. Cerqueira NMFSA, Fernandes PA, Ramos MJ (2011) J Chem Theory Comput 7:1356–1368

    Article  CAS  Google Scholar 

  36. Axley MJ, Grahame DA (1991) J Biol Chem 266:13731–13736

    PubMed  CAS  Google Scholar 

  37. Cerqueira NM, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I, Moura JJ (2009) J Comput Chem 30:2466–2484

    Article  PubMed  CAS  Google Scholar 

  38. Najmudin S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NM, Romao CC, Moura I, Moura JJ, Brondino CD, Romao MJ (2008) J Biol Inorg Chem 13:737–753

    Article  PubMed  CAS  Google Scholar 

  39. Axley MJ, Bock A, Stadtman TC (1991) Proc Natl Acad Sci USA 88:8450–8454

    Article  PubMed  CAS  Google Scholar 

  40. Castillo R, Oliva M, Marti S, Moliner V (2008) J Phys Chem B 112:10012–10022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.S.M. thanks Fundação para a Ciência e a Tecnologia for funding (grant SFRH/BD/32478/2006). P.J.G. and N.M.F.S.A.C. thank Programa Ciência 2007 and 2008 of Fundação para a Ciência e a Tecnologia. This work was supported by projects PDCT/QUI/57701/2004 and PTDC/QUI/67052/2006 in Portugal and CAID-UNL, CONICET, and SEPCYT in Argentina. C.D.B. thanks to CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José J. G. Moura, Pablo J. González or Nuno M. F. S. A. Cerqueira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mota, C.S., Rivas, M.G., Brondino, C.D. et al. The mechanism of formate oxidation by metal-dependent formate dehydrogenases. J Biol Inorg Chem 16, 1255–1268 (2011). https://doi.org/10.1007/s00775-011-0813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0813-8

Keywords

Navigation