Skip to main content
Log in

Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This paper deals with the synthesis and characterization of iron-hexacyanocobaltate (FeHCC) and its antibacterial properties. The nanoparticles were prepared by a facile co-precipitation technique. Crystal structure, particle morphology, and elemental composition were determined using X-ray Powder Diffraction, X-ray fluorescence spectroscopy, Transmission Electron Microscopy (TEM), and Infrared Spectroscopy (IR). The antibacterial activity of the FeHCC nanoparticles was tested against Escherichia coli and Staphylococcus aureus as models for Gram-negative and Gram-positive bacteria, respectively, by bacterial counting method and microscopic visualization (TEM, FEG-SEM, and fluorescence microscopy). The results showed that the FeHCC nanoparticles bind to the bacterial cells, inhibit bacterial growth in a dose- and time-dependent manner, inducing a loss of the membrane potential, the production of reactive oxygen species and the release of macromolecules (nucleic acids and proteins) in the extracellular environment. To the best of our knowledge, this is the first study reporting the antimicrobial effects of metal-hexacyanometallates suggesting practical uses of these materials in different areas, such as self-cleaning surfaces or food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao X, Zhao F, Wang J, Zhong N (2017) RSC Adv 7:36670–36683

    Article  CAS  Google Scholar 

  2. D’Andrea A, Martinez YZ, Alduina R, Monteverde V, Molina CF, Vitale M (2012) Mem Inst Oswaldo Cruz 107:85–88

    Article  PubMed  Google Scholar 

  3. Vitale M, Scatassa ML, Cardamone C, Oliveri G, Piraino C, Alduina R, Napoli C (2015) Foodborne Pathog Dis 12:21–23

    Article  CAS  PubMed  Google Scholar 

  4. Randazzo L, Montana G, Alduina R, Quatrini P, Tsantini E, Salemi B (2015) J Cult Herit 16:838–847

    Article  Google Scholar 

  5. Charnley M, Textor M, Acikgoz C (2011) React Funct Polym 71:329–334

    Article  CAS  Google Scholar 

  6. Rubino S, Busà R, Attanzio A, Alduina R, Di Stefano V, Girasolo MA, Orecchio S, Tesoriere L (2017) Bioorg Med Chem 25:2378–2386

    Article  CAS  PubMed  Google Scholar 

  7. Cancemi P, Buttacavoli M, D’Anna F, Feo S, Fontana RM, Noto R, Sutera A, Vitale P, Gallo G (2017) New J Chem 41:3574–3585

    Article  CAS  Google Scholar 

  8. Dresler C, Saladino ML, Demirbag C, Caponetti E, Chillura Martino DF, Alduina R (2017) Int Biodeterior Biodegradation 125:150–156

    Article  CAS  Google Scholar 

  9. Luo PG, Stutzenberger FJ (2008) Adv Appl Microbiol 63:145–181

    Article  CAS  PubMed  Google Scholar 

  10. Sondi I, Salopek-Sondi B (2004) J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  11. Li J, Tan L, Liu X, Cui Z, Yang X, Yeung KWK, Chu PK, Wu S (2017) ACS Nano 11:11250–11263

    Article  CAS  PubMed  Google Scholar 

  12. Jones N, Ray B, Koodali RT, Manna AC (2008) FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  13. Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) J Food Sci 73:389–394

    Article  Google Scholar 

  14. Amna T, Hassan MS, Yousef A, Mishra A, Barakat NAM, Khil MS, Yong Kim H (2013) Food Bioprocess Technol 6:988–996

    Article  CAS  Google Scholar 

  15. Ciabocco M, Berrettoni M, Zamponi S, Cox JA (2016) J Solid State Electrochem 20:1323–1329

    Article  CAS  Google Scholar 

  16. Berrettoni M, Ciabocco M, Fantauzzi M, Giorgetti M, Rossi A, Caponetti E (2015) RSC Adv 5:35435–35447

    Article  CAS  Google Scholar 

  17. Ciabocco M, Berrettoni M, Giorgetti M, Sougrati MT, Louvain N, Stievano L (2016) New J Chem 40:10406–10411

    Article  CAS  Google Scholar 

  18. Bagramyan K, Galstyan A, Trchounian A (2000) Bioelectrochemistry 51:151–156

    Article  CAS  PubMed  Google Scholar 

  19. Rykov AI, Wang J, Zhang T, Nomura K (2013) Hyperfine Interact 218:53–58

    Article  CAS  Google Scholar 

  20. Beheir SG, Benyamin K, Mekhail FM (1998) J Radioanal Nucl Chem 232:147–150

    Article  CAS  Google Scholar 

  21. Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Inorg Chem 41:5706–5715

    Article  CAS  PubMed  Google Scholar 

  22. Ciabocco M, Berrettoni M, Chillura Martino DF, Giorgetti M (2014) Solid State Ionics 259:53–58

    Article  CAS  Google Scholar 

  23. Garjonyte R, Malinauskas A (1998) Sens Actuators B 46:236–241

    Article  CAS  Google Scholar 

  24. Ciabocco M, Berrettoni M, Zamponi S, Cox JA, Marini S (2013) J Solid State Electrochem 17:2445–2452

    Article  CAS  Google Scholar 

  25. Holland TJB, Redfern SAT (1997) Mineral Mag 61:65–77

    Article  CAS  Google Scholar 

  26. Giardina A, Alduina R, Gottardi E, Di Caro V, Süssmuth RD, Puglia AM (2010) Microb Cell Fact 9:44–54

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vitale M, Gaglio S, Galluzzo P, Cascone G, Piraino C, Di Marco LoPresti V, Alduina R (2017) Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2017.2338

    PubMed  Google Scholar 

  28. Lo Grasso L, Maffioli S, Sosio M, Bibb M, Puglia AM, Alduina R (2015) J Bacteriol 197:2536–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Musso R, Di Cara G, Albanese NN, Marabeti MR, Cancemi P, Martini D, Orsini E, Giordano C, Pucci-Minafra I (2013) J Proteom 90:115–125

    Article  CAS  Google Scholar 

  30. Cancemi P, Di Cara G, Albanese NN, Costantini F, Marabeti MR, Musso R, Riili I, Lupo C, Roz E, Pucci-Minafra I (2012) Proteom Clin Appl 6:364–373

    Article  CAS  Google Scholar 

  31. Caracappa S, Pisciotta A, Persichetti MF, Caracappa G, Alduina R, Arculeo M (2016) Can J Zool 94:379–383

    Article  CAS  Google Scholar 

  32. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. John-Wiley and Sons, New York, p 484

    Google Scholar 

  33. Sharpe AG, Maitlis P, Stone FAG, West R (1976) The chemistry of cyano complexes of the transition metals. Academic Press, New York

    Google Scholar 

  34. Roque J, Reguera E, Balmaseda J, Rodríguez-Hernández J, Reguera L, del Castillo LF (2007) Microporous Mesoporous Mater 103:57–71

    Article  CAS  Google Scholar 

  35. Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P (2017) Oncotarget 9:9685–9705

    PubMed  PubMed Central  Google Scholar 

  36. Lemire JA, Harrison JJ, Turner RJ (2013) Nat Rev 11:371–384

    CAS  Google Scholar 

  37. Lin S, Liu X, Tan L, Cui Z, Yang X, Yeung KWK, Pan H, Wu S (2017) ACS Appl Mater Interfaces 9:19248–19257

    Article  CAS  PubMed  Google Scholar 

  38. Xie X, Mao C, Liu X, Zhang Y, Cui Z, Yang X, Yeung KWK, Pan H, Chu PK, Wu S (2017) ACS Appl Mater Interfaces 9:26417–26428

    Article  CAS  PubMed  Google Scholar 

  39. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wang X, Chu PK, Wu S (2017) ACS Nano 11:9010–9021

    Article  CAS  PubMed  Google Scholar 

  40. Xiang Y, Li J, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wu S (2017) Mater Sci Eng C 79:629–637

    Article  CAS  Google Scholar 

  41. Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  42. Kügler R, Bouloussa O, Rondelez F (2005) Microbiology 151:1341–1348

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is part of the project “Development and Application of Innovative Materials and processes for the diagnosis and restoration of Cultural Heritage–DELIAS”–PON03PE_00214_2 (Programma Operativo Nazionale Ricerca e Competitività 2007–2013). TEM experimental data were provided by Polo Centro Grandi Apparecchiature—ATeN Center—Università di Palermo funded by P.O.R. Sicilia 2000–2006, Misura 3.15 Azione C Quota Regionale. FEG-SEM experimental data were provided by the ATeN-Center of University of Palermo, Laboratorio di preparazione di biomateriali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Berrettoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciabocco, M., Cancemi, P., Saladino, M.L. et al. Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. J Biol Inorg Chem 23, 385–398 (2018). https://doi.org/10.1007/s00775-018-1544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1544-x

Keywords

Navigation