Skip to main content
Log in

Risk sharing for capital requirements with multidimensional security markets

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider the risk sharing problem for capital requirements induced by capital adequacy tests and security markets. The agents involved in the sharing procedure may be heterogeneous in that they apply varying capital adequacy tests and have access to different security markets. We discuss conditions under which there exists a representative agent. Thereafter, we study two frameworks of capital adequacy more closely, namely polyhedral constraints and distribution-based constraints. We prove existence of optimal risk allocations and equilibria within these frameworks and elaborate on their robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in the following, given subsets \(A\) and \(B\) of a vector space \(\mathcal{X}\), \(A+B\) denotes their Minkowski sum \(\{a+b: a\in A, b\in B\}\), and \(A-B:=A+(-B)\).

  2. Given a nonempty set \(M\), a function \(f:M\to [-\infty ,\infty ]\) is proper if \(f^{-1}(\{-\infty \})=\emptyset \) and \(f\not \equiv \infty \).

  3. An ideal \(\mathcal{Y}\) of a Riesz space \(( \mathcal{X},\preceq )\) is a subspace in which the inclusion \(\{Z\in \mathcal{X}: |Z|\preceq |Y|\}\subseteq \mathcal{Y}\) holds for all \(Y\in \mathcal{Y}\).

  4. That is, between any two vertices \(i,j\in [n]\), \(i\neq j\), we can find a connecting path over edges of the graph, meaning that either \(i\sim j\) or we can find \(i_{1},\dots ,i _{m}\in [n]\) for a suitable \(m\in \mathbb{N}\) such that \(i\sim i_{1}\), \(i_{1}\sim i_{2}, \dots , i_{m-1}\sim i_{m}\) and \(i_{m}\sim j\). This is needed for instance in the proof of Proposition 3.6.

  5. Note that the minus sign in the budget constraints is due to the fact that the elements in \(\mathcal{X}_{i}\) model losses, whereas \(\phi \) prices payoffs.

  6. This means that the topology has a neighbourhood base at 0 consisting of convex and solid sets; cf. [4, Sect. 2.3].

  7. Space \(\mathcal{Y}\) is not a Fréchet lattice; hence the necessity for the above formulation of Lemma 4.11.

  8. Recall that \(\mathbf{N}\) in (5.2) can be chosen arbitrarily.

  9. As \(\mathcal{X}\) will be a super Dedekind complete Riesz space (see [4, Definition 1.43] and [27, Theorem A.33]), this translates to the fact that whenever \(X_{n}\downarrow 0\) in order, \(\|X_{n}\|\downarrow 0\) holds as well.

  10. That is, the sets are pairwise disjoint, measurable and their union is \(\Omega \).

  11. We define lower and upper hemicontinuity using sequences rather than nets and tacitly use that this is sufficient under the given assumptions; cf. [3, Theorems 17.20 and 17.21].

References

  1. Acciaio, B.: Short note on inf-convolution preserving the Fatou property. Ann. Finance 5, 281–287 (2009)

    Article  MATH  Google Scholar 

  2. Acciaio, B., Svindland, G.: Optimal risk sharing with different reference probabilities. Insur. Math. Econ. 44, 426–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aliprantis, C., Border, K.: Infinite Dimensional Analysis—A Hitchhiker’s Guide, 3rd edn. Springer, Berlin/Heidelberg (2006)

    MATH  Google Scholar 

  4. Aliprantis, C., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. Am. Math. Soc. Providence (2003)

    Book  MATH  Google Scholar 

  5. Arrow, K.J.: Uncertainty and the welfare economics of medical care. Am. Econ. Rev. 5, 941–973 (1963)

    Google Scholar 

  6. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baes, M., Koch-Medina, P., Munari, C.: Existence, uniqueness, and stability of optimal portfolios of eligible assets. Math. Finance (2019, Forthcoming). https://doi.org/10.1111/mafi.12205.

    Google Scholar 

  8. Barrieu, P., El Karoui, N.: Inf-convolution of risk measures and optimal risk transfer. Finance Stoch. 9, 269–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barvinok, A.: A Course in Convexity. Springer, Berlin/Heidelberg (2012)

    MATH  Google Scholar 

  10. Borch, K.: Equilibrium in a reinsurance market. Econometrica 30, 424–444 (1962)

    Article  MATH  Google Scholar 

  11. Carr, P., Geman, H., Madan, D.: Pricing and hedging in incomplete markets. J. Financ. Econ. 62, 131–167 (2001)

    Article  Google Scholar 

  12. Chen, S., Gao, N., Xanthos, F.: The strong Fatou property of risk measures. Dependence Model. 6, 183–196 (2018)

    Article  MathSciNet  Google Scholar 

  13. Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time. SIAM J. Financ. Math. 8, 738–765 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Finance 19, 189–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dana, R.-A., Le Van, C.: Arbitrage, duality and asset equilibria. J. Math. Econ. 34, 397–413 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dana, R.-A., Le Van, C., Magnien, F.: On the different notions of arbitrage and existence of equilibrium. J. Econ. Theory 87, 169–193 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics: Essays in Honor of Dieter Sondermann, pp. 1–38. Springer, Berlin/Heidelberg (2002)

    Google Scholar 

  18. Delbaen, F.: Monetary Utility Functions. Osaka University CSFI Lecture Note Series, vol. 3. Osaka University Press, Osaka (2012)

    Google Scholar 

  19. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  20. El Karoui, N., Ravanelli, C.: Cash sub-additive risk measures under interest rate ambiguity. Math. Finance 19, 561–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Embrechts, P., Liu, H., Wang, R.: Quantile-based risk sharing. Oper. Res. 66, 936–949 (2017)

    Article  MathSciNet  Google Scholar 

  22. Farkas, E.W., Koch Medina, P., Munari, C.: Beyond cash-additive risk measures: when changing the numéraire fails. Finance Stoch. 18, 145–173 (2013)

    Article  MATH  Google Scholar 

  23. Farkas, E.W., Koch Medina, P., Munari, C.: Capital requirements with defaultable securities. Insur. Math. Econ. 55, 58–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farkas, E.W., Koch Medina, P., Munari, C.: Measuring risk with multiple eligible assets. Math. Financ. Econ. 9, 3–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Filipović, D., Kupper, M.: Equilibrium prices for monetary utility functions. Int. J. Theor. Appl. Finance 11, 325–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Filipović, D., Svindland, G.: Optimal capital and risk allocations for law- and cash-invariant convex functions. Finance Stoch. 12, 423–439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. De Gruyter, Berlin/Boston (2011)

    Book  MATH  Google Scholar 

  28. Gao, N., Leung, D., Munari, C., Xanthos, F.: Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces. Finance Stoch. 22, 395–415 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  30. Husain, T.: The Open Mapping and Closed Graph Theorems in Topological Vector Spaces. Vieweg, Braunschweig (1965)

    Book  MATH  Google Scholar 

  31. Jouini, E., Schachermayer, W., Touzi, N.: Optimal risk sharing for law invariant monetary utility functions. Math. Finance 18, 269–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klöppel, S., Schweizer, M.: Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599–627 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liebrich, F.-B., Svindland, G.: Model spaces for risk measures. Insur. Math. Econ. 77, 150–165 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mas-Colell, A., Zame, W.: Equilibrium theory in infinite dimensional spaces. In: Hildenbrand, W., Sonnenschein, H. (eds.) Handbook of Mathematical Economics, vol. 4, pp. 1835–1898. Elsevier, Amsterdam (1991)

    Google Scholar 

  35. Munari, C.: Measuring risk beyond the cash-additive paradigm. PhD thesis, ETH Zürich (2015). Available online at https://doi.org/10.3929/ethz-a-010475509

  36. Pichler, A.: The natural Banach space for version independent risk measures. Insur. Math. Econ. 53, 405–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ravanelli, C., Svindland, G.: Comonotone Pareto optimal allocations for law invariant robust utilities on \(L^{1}\). Finance Stoch. 18, 249–269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  39. Rudin, M.E.: A new proof that metric spaces are paracompact. Proc. Am. Math. Soc. 20, 603 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Svindland, G.: Continuity properties of law-invariant (quasi-)convex risk functions on \(L^{\infty }\). Math. Financ. Econ. 3, 39–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Svindland, G.: Subgradients of law-invariant convex risk measures on \(L^{1}\). Stat. Decis. 27, 169–199 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Tsanakas, A.: To split or not to split: capital allocation with convex risk measures. Insur. Math. Econ. 44, 268–277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, R.: Regulatory arbitrage of risk measures. Quant. Finance 16, 337–347 (2016)

    Article  MathSciNet  Google Scholar 

  44. Wilson, R.: The theory of syndicates. Econometrica 36, 119–132 (1968)

    Article  Google Scholar 

  45. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  46. Zheng, X.Y.: Pareto solutions of polyhedral-valued vector optimization problems in Banach spaces. Set-Valued Anal. 17, 389–408 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We should like to thank the Associate Editor and an anonymous referee for helpful suggestions which aided in improving the original draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix-Benedikt Liebrich.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical supplements

Appendix: Technical supplements

1.1 A.1 The geometry of convex sets

Fix a nonempty convex subset \(\mathcal{C}\) of a locally convex Hausdorff topological Riesz space \((\mathcal{X},\preceq ,\tau )\) with dual space \(\mathcal{X}^{*}\). The support function of \(\mathcal{C}\) is the functional

$$ \sigma _{\mathcal{C}}:\mathcal{X}^{*}\to (-\infty ,\infty ],\qquad \phi \mapsto \sup _{Y\in \mathcal{C}}\phi (Y). $$

The recession cone of \(\mathcal{C}\) is the set

$$ 0^{+}\mathcal{C}:=\{U\in \mathcal{X}: Y+kU\in \mathcal{C}, \forall Y \in \mathcal{C}, \forall k\geq 0 \}. $$

A vector \(U\) lies in \(0^{+}\mathcal{C}\) if and only if \(Y+U\in \mathcal{C}\) holds for all \(Y\in \mathcal{C}\). \(U\) is then called a direction of \(\mathcal{C}\). The lineality space of \(\mathcal{C}\) is the vector space \(\operatorname{lin}(\mathcal{C}):=0^{+} \mathcal{C}\cap (-0^{+}\mathcal{C})\). In the case of an acceptance set \(\mathcal{A}\), monotonicity implies \(\operatorname {dom}(\sigma _{\mathcal{A}}) \subseteq \mathcal{X}^{*}_{+}\). If \(\mathcal{C}\) is closed, the Hahn–Banach separation theorem shows that

$$ \mathcal{C}=\{Y\in \mathcal{X}: \phi (Y)\leq \sigma _{\mathcal{C}}( \phi ), \forall \phi \in \operatorname {dom}(\sigma _{\mathcal{C}})\}. $$

Combining this identity with the definition of the recession cone and the lineality space yields

Lemma A.1

If \(\mathcal{C}\subseteq \mathcal{X}\) is closed and convex and \(\mathcal{J}\subseteq \operatorname {dom}(\sigma _{\mathcal{C}})\) is such that

$$ \mathcal{C}=\{X\in \mathcal{X}: \phi (X)\leq \sigma _{\mathcal{C}}( \phi ), \forall \phi \in \mathcal{J}\}, $$

then

$$ 0^{+}\mathcal{C}=\bigcap _{\phi \in \mathcal{J}}\mathcal{L}_{0}(\phi )= \{U\in \mathcal{X}: \phi (U)\leq 0, \forall \phi \in \mathcal{J}\} \quad \textit{and}\quad \operatorname{lin}(\mathcal{A})= \bigcap _{\phi \in \mathcal{J}}\ker (\phi ). $$

Finally, we state a decomposition result for closed convex sets specific to finite-dimensional spaces. It follows from arguments in the proofs of [9, Lemmas II.16.2 and II.16.3].

Lemma A.2

Let\(\mathcal{C}\subseteq \mathbb{R}^{d}\)be convex and closed and\(\mathcal{V}:=\operatorname{lin}(\mathcal{C})^{\perp }\). If\(\operatorname{ext}( \mathcal{C}\cap \mathcal{V})\)denotes the set of extreme points of\(\mathcal{C}\cap \mathcal{V}\)and\(\operatorname{co}(\cdot )\)is the convex hull operator, \(\mathcal{C}\)can be written as

$$ \mathcal{C}=\operatorname{co}\big(\operatorname{ext}(\mathcal{C}\cap \mathcal{V}) \big)+0^{+}\mathcal{C}. $$

1.2 A.2 Infimal convolution

Let \((\mathcal{X},\preceq )\) be a Riesz space and suppose that functions \(g_{i}:\mathcal{X}\to (-\infty ,\infty ]\), \(i\in [n]\), are given. The infimal convolution or epi-sum of \(g_{1},\dots , g_{n}\) is the function \(\Box _{i=1}^{n}g_{i}:\mathcal{X}\to [-\infty ,\infty ]\) defined by

$$ \Box _{i=1}^{n}g_{i}(X):=\inf \bigg\{ \sum _{i=1}^{n} g_{i}(X_{i}): X _{1},\dots , X_{n}\in \mathcal{X}, \sum _{i=1}^{n}X_{i}=X\bigg\} ,\quad X \in \mathcal{X}. $$

The convolution is said to be exact at \(X\in \mathcal{X}\) if \((\Box _{i=1}^{n}g_{i})(X)\in \mathbb{R}\) and there are \(X_{1},\dots , X_{n}\in \mathcal{X}\) with \(\sum _{i=1}^{n}X_{i}=X\) such that

$$ \sum _{i=1}^{n}g_{i}(X_{i})=(\Box _{i=1}^{n}g_{i})(X). $$

Lemma A.3

Suppose\(\mathcal{X}_{i}\subseteq \mathcal{X}\), \(i\in [n]\), are ideals in a Riesz space\((\mathcal{X},\preceq )\)such that\(\mathcal{X}= \sum _{i=1}^{n}\mathcal{X}_{i}\).

(1) If all\(g_{i}:\mathcal{X}\to (-\infty ,\infty ]\)are convex, then\(\Box _{i=1}^{n}g_{i}\)is convex.

(2) If\(g_{i}\)is monotone on\(\mathcal{X}_{i}\)with respect tofor all\(i\in [n]\), i.e., \(X,Y\in \mathcal{X}_{i}\)and\(X\preceq Y\)implies\(g_{i}(X)\leq g_{i}(Y)\), and if\(g_{i}|_{ \mathcal{X}\backslash \mathcal{X}_{i}}\equiv \infty \), then\(\Box _{i=1}^{n}g_{i}\)is monotone on\(\mathcal{X}\).

Proof

We only prove (2). Let \(X,Y\in \mathcal{X}\) with \(X\preceq Y\) and let \(\mathbf{X},\mathbf{Y}\in \prod _{i=1}^{n}\mathcal{X}_{i}\) with \(\sum _{i=1}^{n}X_{i}=X\) and \(\sum _{i=1}^{n}Y_{i}=Y\). We thus have

$$ 0\preceq Y-X=|Y-X|\preceq \sum _{i=1}^{n}|Y_{i}-X_{i}|. $$

By the Riesz space property of \(\mathcal{X}\) and the Riesz decomposition property (cf. [3, Sect. 8.5]), there is a vector \(\mathbf{Z} \in (\mathcal{X}_{+})^{n}\) such that \(Y-X=\sum _{i=1}^{n}Z_{i}\) and such that \(Z_{i}=|Z_{i}|\preceq |Y_{i}-X_{i}|\), \(i\in [n]\). Because \(\mathcal{X}_{i}\) is an ideal, we have in fact \(\mathbf{Z}\in \prod _{i=1}^{n}\mathcal{X}_{i}\). By the monotonicity of \(g_{i}\) on \(\mathcal{X}_{i}\), \(i\in [n]\), we obtain

$$ (\Box _{i=1}^{n}g_{i})(X)\leq \sum _{i=1}^{n} g_{i}(Y_{i}-Z_{i})\leq \sum _{i=1}^{n}g_{i}(Y_{i}). $$

Because \((\Box _{i=1}^{n}g_{i})(Y)=\inf \{\sum _{i=1}^{n}g_{i}(Y_{i}): \mathbf{Y}\in \prod _{i=1}^{n}\mathcal{X}_{i}\}\) by the assumption that \(g_{i}|_{\mathcal{X}\backslash \mathcal{X}_{i}}\equiv \infty\), taking the infimum over suitable \(\mathbf{Y}\) on the right-hand side proves the assertion. □

Note that the risk sharing functional satisfies \(\Lambda =\Box _{i=1} ^{n}g_{i}\), where the functions \(g_{i}\) are defined by \(g_{i}(X)=\rho _{i}(X)\) if \(X\in \mathcal{X}_{i}\) and \(g_{i}(X)=\infty \) otherwise, \(X\in \mathcal{X}\), \(i\in [n]\). These functions \(g_{i}\) inherit convexity on \(\mathcal{X}\) and monotonicity on \(\mathcal{X}_{i}\) from \(\rho _{i}\).

Lemma A.4

Given a locally convex Hausdorff topological Riesz space\((\mathcal{X},\preceq ,\tau )\)and proper functions\(g_{i}:\mathcal{X}\to (-\infty ,\infty ]\), \(i\in [n]\), the following identities hold:

$$ (\Box _{i=1}^{n}g_{i})^{*}=\sum _{i=1}^{n}g_{i}^{*}\quad \textit{and}\quad \operatorname {dom}\big((\Box _{i=1}^{n}g_{i})^{*}\big)=\bigcap _{i=1}^{n}\operatorname {dom}(g_{i} ^{*}). $$

1.3 A.3 Correspondences

Given two nonempty sets \(A\) and \(B\), a map \(\Gamma : A\to 2^{B}\) mapping elements of \(A\) to subsets of \(B\) is called a correspondence and denoted by \(\Gamma : A\twoheadrightarrow B\). Assume now that \((\mathcal{X},\tau )\) and \((\mathcal{Y},\sigma )\) are topological spaces, and let \(\Gamma :\mathcal{X}\twoheadrightarrow \mathcal{Y}\) be a correspondence. A continuous function \(\Psi :\mathcal{X}\to \mathcal{Y}\) is a continuous selection for the correspondence \(\Gamma \) if \(\Psi (x)\in \Gamma (x)\) holds for all \(x\in \mathcal{X}\).

If \((\mathcal{X},\sigma )\) is first-countable, \(\Gamma \) is upper hemicontinuous at \(x\in \mathcal{X}\) if whenever \((x_{k})_{k\in \mathbb{N}}\) is a sequence \(\sigma \)-converging to \(x\) and \((y_{k})_{k \in \mathbb{N}}\subseteq \mathcal{Y}\) is such that \(y_{k}\in \Gamma (x _{k})\) for each \(k\in \mathbb{N}\), there is a limit point \(y\in \Gamma (x)\) of \((y_{k})_{k\in \mathbb{N}}\). If both topological spaces are first-countable, \(\Gamma \) is lower hemicontinuous at \(x\in \mathcal{X}\) if whenever \((x_{k})_{k\in \mathbb{N}}\) is a sequence \(\sigma \)-converging to \(x\) and \(y\in \Gamma (x)\), there are a subsequence \((k_{\lambda })_{\lambda \in \mathbb{N}}\) and \(y_{\lambda }\in \Gamma (x_{k_{\lambda }})\), \(\lambda \in \mathbb{N}\), such that \(y_{\lambda }\to y\) with respect to \(\tau \) as \(\lambda \to \infty \).Footnote 11 An example of a lower hemicontinuous correspondence relevant for our investigations is the security allocation map

$$ \mathbb{A}^{s}_{\cdot }:\mathcal{M}\ni Z\mapsto \mathbb{A}_{Z}\cap \prod _{i=1}^{n}\mathcal{S}_{i}. $$

Lemma A.5

The correspondence\(\mathbb{A}_{\cdot }^{s}\)is lower hemicontinuous on the global security marketand admits a continuous selection\(\Psi :\mathcal{M}\to \prod _{i=1}^{n}\mathcal{S}_{i}\)with respect to any norm on ℳ.

Proof

Let \(\langle \cdot ,\cdot \rangle \) be an inner product on ℳ. Set \(\mathcal{S}_{0}:=\{0\}\). We claim that there are natural numbers \(0=m_{0}< m_{1}\leq \cdots \leq m_{n}\) and \(Z_{1}, \dots ,Z_{m_{n}}\in \bigcup _{i=1}^{n}\mathcal{S}_{i}\) such that for all \(i\in [n]\), it holds that \(\{Z_{m_{i-1}+1},\dots ,Z_{m_{i}}\}\) is an orthonormal basis of \(\{X\in \mathcal{S}_{i}: X\perp \operatorname{span}\{Z_{1},\dots ,Z_{m_{i-1}}\}\}\). Note that every \(Z\in \mathcal{M}\) can be expressed as \(Z=\sum _{i=1}^{m_{n}}\langle Z_{i},Z \rangle Z_{i}\); hence the mapping \(\Psi : Z\mapsto \mathbb{A}_{Z}^{s}\) defined by

$$ \Psi (Z)_{i}:=\sum _{i=m_{i-1}+1}^{m_{i}}\langle Z_{i},Z\rangle Z_{i}, \quad i\in [n], $$

is a selection of \(\mathbb{A}_{\cdot }^{s}\) and continuous with respect to the unique locally convex Hausdorff topology on ℳ. Lower hemicontinuity follows immediately. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebrich, FB., Svindland, G. Risk sharing for capital requirements with multidimensional security markets. Finance Stoch 23, 925–973 (2019). https://doi.org/10.1007/s00780-019-00402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00402-6

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation