Skip to main content

Advertisement

Log in

Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

Reconstruction of large and complex bone segments is a challenging problem facing maxillofacial surgery. The majority of current regenerative approaches rely on extrinsic vascularization, which is deficient after cancer ablation and irradiation. The aim of the study was to investigate the efficacy of intrinsic axial vascularization of synthetic bone scaffolds in the management of critical-size mandibular defects.

Materials and methods

Scaffold-guided mandibular regeneration in two groups of adult male goats was compared. Only the scaffolds of the second group were axially vascularized via in situ embedding of an arteriovenous loop through microsurgical anastomosis of facial vessels. After 6 months of follow up, both groups were compared through radiological, biomechanical, histological and histomorphometric analysis.

Results

The axially vascularized constructs have showed significantly more central vascularization (p = 0.021) and markedly enhanced central bone formation (p = 0.08). The biomechanical characteristics were enhanced, but the difference between both groups was not statistically significant (p = 0.98).

Conclusions

Axially vascularized synthetic mandibular grafts show better vascularization at their central regions, permitting more efficient bone regeneration.

Clinical relevance

The encouraging results of the proposed technique could be of benefit in optimizing the reconstruction of large critical-size bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A (2012) Tissue engineering and regenerative medicine—where do we stand? J Cell Mol Med 16(6):1157–1165. doi:10.1111/j.1582-4934.2012.01564.x

    Article  PubMed  Google Scholar 

  2. Rath SN, Strobel LA, Arkudas A, Beier JP, Maier AK, Greil P, Horch RE, Kneser U (2012) Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med 16(10):2350–2361. doi:10.1111/j.1582-4934.2012.01545.x

    Article  PubMed  Google Scholar 

  3. Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, Fabre T, Cornet S, Durand M, Leonard A, Sahraoui N, Letourneur D, Amedee J (2013) A nano-hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34(12):2947–2959. doi:10.1016/j.biomaterials.2013.01.049

    Article  PubMed  Google Scholar 

  4. Hodde J (2002) Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 8(2):295–308. doi:10.1089/107632702753725058

    Article  PubMed  Google Scholar 

  5. Pellegrini G, Seol YJ, Gruber R, Giannobile WV (2009) Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res 88(12):1065–1076. doi:10.1177/0022034509349748

    Article  PubMed Central  PubMed  Google Scholar 

  6. Schliephake H (2013) Clinical efficacy of growth factors to enhance tissue repair in oral and maxillofacial reconstruction: a systematic review. Clin Implant Dent Relat Res. doi:10.1111/cid.12114

    PubMed  Google Scholar 

  7. Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12(12):3285–3305. doi:10.1089/ten.2006.12.3285

    Article  PubMed  Google Scholar 

  8. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S (2009) Vascularization—the conduit to viable engineered tissues. Tissue Eng B Rev 15(2):159–169. doi:10.1089/ten.teb.2008.0193

    Article  Google Scholar 

  9. Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann KU, Hess A, Brune K, Greil P, Sturzl M, Horch RE (2006) Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12(7):1721–1731. doi:10.1089/ten.2006.12.1721

    Article  PubMed  Google Scholar 

  10. Polykandriotis E, Arkudas A, Horch RE, Sturzl M, Kneser U (2007) Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 11(1):6–20. doi:10.1111/j.1582-4934.2007.00012.x

    Article  PubMed  Google Scholar 

  11. Morrison WA, Dvir E, Doi K, Hurley JV, Hickey MJ, O'Brien BM (1990) Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits. Br J Plast Surg 43(6):645–654

    Article  PubMed  Google Scholar 

  12. Guo L, Pribaz JJ (2009) Clinical flap prefabrication. Plast Reconstr Surg 124(6 Suppl):e340–e350. doi:10.1097/PRS.0b013e3181bcf094

    Article  PubMed  Google Scholar 

  13. Erol OO, Spira M (1979) New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum 30:530–531

    PubMed  Google Scholar 

  14. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 10(1):7–19

    Article  PubMed  Google Scholar 

  15. Eweida AM, Nabawi AS, Marei MK, Khalil MR, Elhammady HA (2011) Mandibular reconstruction using an axially vascularized tissue-engineered construct. Ann Surg Innov Res 5:2. doi:10.1186/1750-1164-5-2

    Article  PubMed Central  PubMed  Google Scholar 

  16. Eweida AM, Nabawi AS, Elhammady HA, Marei MK, Khalil MR, Shawky MS, Arkudas A, Beier JP, Unglaub F, Kneser U, Horch RE (2012) Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg 132(9):1353–1362. doi:10.1007/s00402-012-1550-3

    Article  PubMed  Google Scholar 

  17. Beier JP, Horch RE, Arkudas A, Polykandriotis E, Bleiziffer O, Adamek E, Hess A, Kneser U (2009) De novo generation of axially vascularized tissue in a large animal model. Microsurgery 29(1):42–51. doi:10.1002/micr.20564

    Article  PubMed  Google Scholar 

  18. Beier JP, Horch RE, Hess A, Arkudas A, Heinrich J, Loew J, Gulle H, Polykandriotis E, Bleiziffer O, Kneser U (2010) Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 4(3):216–223. doi:10.1002/term.229

    Article  PubMed  Google Scholar 

  19. Lopez-Heredia MA, Bongio M, Cuijpers VM, van Dijk NW, van den Beucken JJ, Wolke JG, Jansen JA (2012) Bone formation analysis: effect of quantification procedures on the study outcome. Tissue Eng C Methods 18(5):369–373. doi:10.1089/ten.TEC.2011.0353

    Article  Google Scholar 

  20. Yazar S (2007) Selection of recipient vessels in microsurgical free tissue reconstruction of head and neck defects. Microsurgery 27(7):588–594. doi:10.1002/micr.20407

    Article  PubMed  Google Scholar 

  21. Arkudas A, Balzer A, Buehrer G, Arnold I, Hoppe A, Detsch R, Newby P, Fey T, Greil P, Horch RE, Boccaccini AR, Kneser U (2013) Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng C Methods 19(6):479–486. doi:10.1089/ten.TEC.2012.0572

    Article  Google Scholar 

  22. Lokmic Z, Mitchell GM (2008) Engineering the microcirculation. Tissue Eng B Rev 14(1):87–103. doi:10.1089/teb.2007.0299

    Article  Google Scholar 

  23. Cassell OC, Hofer SO, Morrison WA, Knight KR (2002) Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg 55(8):603–610

    Article  PubMed  Google Scholar 

  24. Zhang N, Mustin D, Reardon W, Almeida AD, Mozdziak P, Mrug M, Eisenberg LM, Sedmera D (2006) Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev 15(1):17–28. doi:10.1089/scd.2006.15.17

    Article  PubMed  Google Scholar 

  25. Williams SH, Vinyard CJ, Wall CE, Hylander WL (2009) Mandibular corpus bone strain in goats and alpacas: implications for understanding the biomechanics of mandibular form in selenodont artiodactyls. J Anat 214(1):65–78. doi:10.1111/j.1469-7580.2008.01008.x

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH (2007) Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol 210(Pt 6):1046–1063. doi:10.1242/jeb.02733

    Article  PubMed  Google Scholar 

  27. Vaccaro AR (2002) The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 25(5 Suppl):s571–s578

    PubMed  Google Scholar 

  28. Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31(3):357–374

    Article  PubMed  Google Scholar 

  29. Raida M, Heymann AC, Gunther C, Niederwieser D (2006) Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med 18(4):735–739

    PubMed  Google Scholar 

  30. Hu ZM, Peel SA, Ho SK, Sandor GK, Clokie CM (2009) Comparison of platelet-rich plasma, bovine BMP, and rhBMP-4 on bone matrix protein expression in vitro. Growth Factors 27(5):280–288. doi:10.1080/08977190903137819

    Article  PubMed  Google Scholar 

  31. Park EJ, Kim ES, Weber HP, Wright RF, Mooney DJ (2008) Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2. Int J Oral Maxillofac Implants 23(5):818–826

    PubMed Central  PubMed  Google Scholar 

  32. Malhotra A, Pelletier MH, Yu Y, Walsh WR (2013) Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 133(2):153–165. doi:10.1007/s00402-012-1641-1

    Article  PubMed  Google Scholar 

  33. Schuckert KH, Jopp S, Osadnik M (2010) Modern bone regeneration instead of bone transplantation: a combination of recombinant human bone morphogenetic protein-2 and platelet-rich plasma for the vertical augmentation of the maxillary bone-a single case report. Tissue Eng C Methods 16(6):1335–1346. doi:10.1089/ten.TEC.2010.0020

    Article  Google Scholar 

  34. Elshahat A (2006) Correction of craniofacial skeleton contour defects using bioactive glass particles. Egypt J Plast Reconstr Surg 30:113

    Google Scholar 

  35. Clokie CM, Sandor GK (2008) Reconstruction of 10 major mandibular defects using bioimplants containing BMP-7. J Can Dent Assoc 74(1):67–72

    PubMed  Google Scholar 

  36. Trautvetter W, Kaps C, Schmelzeisen R, Sauerbier S, Sittinger M (2011) Tissue-engineered polymer-based periosteal bone grafts for maxillary sinus augmentation: five-year clinical results. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 69(11):2753–2762. doi:10.1016/j.joms.2011.02.096

    Article  Google Scholar 

  37. Schuckert KH, Jopp S, Teoh SH (2009) Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case. Tissue Eng Part A 15(3):493–499. doi:10.1089/ten.tea.2008.0033

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mrs. Arnold, Mr. Fleischer and Mrs. Weigand for their valuable technical assistance. Some results were presented in the doctoral thesis of Dr. Eweida. The study was funded by a research grant from Alexandria University (AlexREP).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahmoud Eweida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eweida, A.M., Nabawi, A.S., Abouarab, M. et al. Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds. Clin Oral Invest 18, 1671–1678 (2014). https://doi.org/10.1007/s00784-013-1143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1143-8

Keywords

Navigation