Skip to main content
Log in

Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H2S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H2S in the cave and its outflow (El Azufre). The concentrations of H2S reach more than 300 μM inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H2S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H2S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H2S within the cave, we could not find a higher fish density in areas with lower concentrations of H2S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abel DC, Koenig CC, Davis WP (1987) Emersion in the mangrove forest fish Rivulus marmoratus: a unique response to hydrogen sulfide. Environ Biol Fishes 18:67–72

    Article  Google Scholar 

  • Adelman IR, Smith LL Jr (1970) Effect of hydrogen sulfide on northern pike eggs and sac fry. Trans Am Fish Soc 99:501–509

    Article  CAS  Google Scholar 

  • Affonso EG, Rantin FT (2005) Respiratory responses of the air-breathing fish Hoplosternum littorale to hypoxia and hydrogen sulfide. Comp Biochem Physiol C Toxicol Pharmacol 141:275–280

    Article  PubMed  CAS  Google Scholar 

  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations of aquatic organisms. Aquat Toxicol 24:21–62

    Article  CAS  Google Scholar 

  • Bagarinao T, Lantin-Olaguer I (1999) The sulfide tolerance of milkfish and tilapia in relation to fish kills in farms and natural waters in the Philippines. Hydrobiologia 382:137–150

    Article  Google Scholar 

  • Bagarinao T, Vetter RD (1989) Sulfide tolerance and detoxification in shallow water marine fishes. Mar Biol 103:291–302

    Article  CAS  Google Scholar 

  • Bagarinao T, Vetter RD (1990) Oxidative detoxification of sulfide by mitochondria of the California killifish Fundulus parvipinnis and the speckled sanddap Citharichthys stignaeus. J Comp Physiol B 160:519–527

    Article  CAS  Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Begon ME, Harper JL, Townsend CR (1996) Ecology, 3rd edn. Blackwell Science, Oxford

  • Boston PJ, Spilde MN, Northup DE et al (2001) Cave biosignature suites: microbes, minerals, and mars. Astrobiology 1:25–55

    Article  PubMed  CAS  Google Scholar 

  • Carrico RJ, Blumberg WE, Peisach J (1978) The reversible binding of oxygen to sulfhemoglobin. J Biol Chem 253:7212–7215

    PubMed  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Colby PJ, Smith LL Jr (1967) Survival of walleye eggs and fry on paper fiber sludge deposits in the Rainy River, Minnesota. Trans Am Fish Soc 96:278–296

    Article  Google Scholar 

  • Dare MR, Hubert WA, Meyer JS (2001) Influence of stream flow on hydrogen sulfide concentrations and distributions of two trout species in a Rocky Mountains tailwater. N Am J Fish Manag 21:971–975

    Article  Google Scholar 

  • Geiger SP, Torres JJ, Crabtree RE (2000) Air breathing and gill ventilation frequencies in juvenile tarpon, Megalops atlanticus: responses to changes in dissolved oxygen, temperature, hydrogen sulfide, and pH. Environ Biol Fishes 59:181–190

    Article  Google Scholar 

  • Gordon MS, Rosen DE (1962) A cavernicolous form of the Poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 360–368

  • Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol 88:54–66

    Article  Google Scholar 

  • Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier Science, Amsterdam pp 159–188

    Google Scholar 

  • Kramer DL (1987) Dissolved oxygen and fish behavior. Environ Biol Fishes 18:81–92

    Article  Google Scholar 

  • Kramer DL, Mehegan JP (1981) Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces: Poeciliidae). Environ Biol Fishes 6:299–313

    Article  Google Scholar 

  • Langecker TG, Wilkens H, Parzefall J (1996) Studies on the trophic structure of an energy-rich Mexican cave (Cueva de las Sardinas) containing sulfurous water. Mem Biospeol 23:121–125

    Google Scholar 

  • Lovatt Evans C (1967) The toxicity of hydrogen sulphide and other sulphides. Q J Exp Physiol 52:231–248

    Google Scholar 

  • Luther GW, et al (2004) The roles of anoxia, H2S, and storm events in fish kills of dead-end canals of Delaware inland bays. Estuaries 27:551–560

    Article  CAS  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Kluwer Academic Publisher, Boston

    Google Scholar 

  • Mayland HJ (1984) Mittelamerika: Cichliden und Lebendgebärende. Landbuch, Hannover

    Google Scholar 

  • McMullin ER, Bergquist DC, Fisher CR (2000) Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon fauna. Gravit Space Biol Bull 13:13–23

    PubMed  CAS  Google Scholar 

  • Miller RR (1976) Geographical distribution of Central American freshwater fishes. In: Thorson TB (eds) Investigations of the ichthyofauna of Nicaraguan Lakes—a monumental work on Nicaraguan Fishes. The school of life sciences, University of Nebraska Lincoln, Lincoln, Nebraska pp 125–155

    Google Scholar 

  • Miller RR (2005) Freshwater fishes of Mexico. Chicago University Press, Chicago

    Google Scholar 

  • Nicholls P (1975) The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced alpha-peak. Biochim Biophys Acta 396:24–35

    Article  PubMed  CAS  Google Scholar 

  • Oseid DM, Smith Jr LL (1974) Chronic toxicity of hydrogen sulfide to Gammarus pseudolimneatus. Trans Am Fish Soc 103:819–822

    Article  CAS  Google Scholar 

  • Parzefall J (1969) Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschliesslich einer Höhlenform von M. sphenops. Behaviour 33:1–37

    PubMed  CAS  Google Scholar 

  • Parzefall J (1993) Behavioural ecology of cave-dwelling fishes. In: Pitcher TJ (eds Behaviour of teleost fishes, 2nd edn. Chapman & Hall, London pp 573–608

  • Parzefall J (2001) A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ Biol Fishes 62:263–275

    Article  Google Scholar 

  • Peek AS, Feldmann RA, Lutz RA, Vrijenhoek RC (1998) Conspeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Article  PubMed  CAS  Google Scholar 

  • Plath M, Körner K, Parzefall J, Schlupp I (2003a) Persistence of a visually mediated mating preference in the cave molly, Poecilia mexicana (Poeciliidae, Teleostei). Subterr Biol 1:93–97

    Google Scholar 

  • Plath M, Parzefall J, Schlupp I (2003b) The role of sexual harassment in cave- and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309

    Article  Google Scholar 

  • Plath M, Parzefall J, Körner K, Schlupp I (2004) Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601

    Article  Google Scholar 

  • Plath M, Heubel KU, García de León F, Schlupp I (2005) Cave molly females like well-fed males. Behav Ecol Sociobiol 58:144–151

    Article  Google Scholar 

  • Plath M, Seggel U, Burmeister H, Heubel KU, Schlupp I (2006) Choosy males from the underground: male mate choice in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Naturwissenschaften 93:103–109

    Article  PubMed  CAS  Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subterranean ecosystems. In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier Science, Amsterdam pp 231–249

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    Article  PubMed  Google Scholar 

  • Price ARG (2002) Simultaneous ‘hotspots’ and ‘coldspots’ of marine biodiversity and implications for global conservation. Mar Ecol Prog Ser 241:23–27

    Google Scholar 

  • Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser 185:1–19

    Google Scholar 

  • Smith LL Jr, Oseid DM, Kimball GL, El-Kandelgy SM (1976) Toxicity of hydrogen sulfide to various life history stages of the bluegill (Lepomis macrochirus). Trans Am Fish Soc 105:442–449

    Article  CAS  Google Scholar 

  • Smith L, Kruszynah H, Smith RP (1977) The effect of methemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochem Pharmacol 26:2247–2250

    Article  PubMed  CAS  Google Scholar 

  • Stallones RA, et al (1979) Hydrogen sulfide. University Park Press, Baltimore

  • Stawikowski R, Werner U (1998) Die Buntbarsche Amerikas, Band I. Eugen Ulmer, Stuttgart

  • Theede H (1973) Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates. Neth J Sea Res 7:245–252

    Google Scholar 

  • Torrans EL, Clemens HP (1982) Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comp Biochem Physiol 71C:183–190

    CAS  Google Scholar 

  • Townsend CR, Begon ME, Harper JL (2003) Essentials of ecology, 2nd edn. Blackwell Publishing, Oxford

  • Tsurumi M (2003) Diversity at hydrothermal vents. Glob Ecol Biogeogr 12:181–190

    Article  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton

Download references

Acknowledgments

We are grateful to the people of Tapijulapa for their hospitality during our visits. J. Parzefall, M. Schartl, K.E. Körner, and D. Lamatsch provided help during our field trips. J. Parzefall furthermore provided very valuable information. L. Krumholz helped in the lab and provided the infrastructure for sulfide measurements. M. Chumchal provided information on mercury concentrations in mollies. C. Franssen and six anonymous reviewers improved previous versions of the manuscript with their valuable comments. The Mexican Government kindly issued permits to conduct this research (Permiso de pesca de fomento numbers—291002-613-1577, DGOPA/5864/260704/-2408, and DGOPA/16988/191205/-8101). Financial support came from the DFG (SCHL 344/5-3,15-1; PL 470/1-1) and the German Ichthyological Association (to M.T. and M.P.) as well as the Basler Foundation for Biological Research, the Janggen-Poehn-Foundation, the Roche Research Foundation, and the Wolfermann-Nägeli-Foundation (to M.T.). N. Tobler kindly provided the sketch of the collection sites (Fig. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tobler.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobler, M., Schlupp, I., Heubel, K.U. et al. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10, 577–585 (2006). https://doi.org/10.1007/s00792-006-0531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0531-2

Keywords

Navigation