Skip to main content
Log in

Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30–50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml−1, 42.5 µM min−1 mg−1, and 392.46 × 103 min−1, respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abidi F, Chobert J, Haertlé T, Marzouki MN (2011) Purification and biochemical characterization of stable alkaline protease Prot-2 from Botrytis cinerea. Process Biochem 46:2301–2310. doi:10.1016/j.procbio.2011.09.010

    Article  CAS  Google Scholar 

  • Annamalaia N, Rajeswari MV, Sahu SK, Thangavel B (2014a) Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochem 49:1012–1019. doi:10.1016/j.procbio.2014.03.007

    Article  Google Scholar 

  • Annamalaia N, Mayavan Veeramuthu Rajeswari MV, Balasubramanian T (2014b) Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5using marine wastes. Food Bioprod Process 92:335–342. doi:10.1016/j.fbp.2013.08.009

    Article  Google Scholar 

  • Beg QK, Gupta R (2003) Purification and characterization of an oxidation-stable, thiol dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb Tech 32:294–304. doi:10.1016/S0141-0229(02)00293-4

    Article  CAS  Google Scholar 

  • Bluum H, Beier Hand Gross HJ (1987) Improved silver staining method of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

    Article  Google Scholar 

  • Deng A, Wu J, Zhang Y, Zhang G, Wen T (2010) Purification and characterization of a surfactant stable high alkaline protease from Bacillus sp. B001. Bioresour Technol 101:7100–7106. doi:10.1016/j.biortech.2010.03.130

    Article  CAS  Google Scholar 

  • Doddapaneni KK, Tatineni R, Vellanki RN, Rachcha S, Anabrolu N, Narakuti V, Mangamoori N (2008) Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiol Res 164:383–390. doi:10.1016/j.micres.2007.04.005

    Article  Google Scholar 

  • Dodia MS, Bhimani HG, Rawal CM, Joshi RH, Singh SP (2008) Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Bioresour Technol 99:6223–6227. doi:10.1016/j.biortech.2007.12.020

    Article  CAS  PubMed  Google Scholar 

  • Ertan H, Cassel C, Verma A, Poljak A, Charlton T, Aldrich-Wright J, Omar SM, Siddiqui KS, Ricardo C (2015) A new broad specificity alkaline metalloprotease from a Pseudomonas sp. Isolated from refrigerated milk: role of calcium in improving enzyme productivity. J Mol Catal B-Enzym 113:1–8. doi:10.1016/j.molcatb.2014.12.010

    Article  CAS  Google Scholar 

  • George N, Chauhan PS, Kumar V, Puri N, Gupta N (2014) Approach to ecofriendly leather: characterization and application of an alkaline protease for chemical free dehairing of skins and hides at pilot scale. J Clean Prod 79:249–257. doi:10.1016/j.jclepro.2014.05.046

    Article  CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Tech 32:519–524. doi:10.1016/S01410229(02)00324-1

    Article  CAS  Google Scholar 

  • Gohel SD, Singh SP (2015) Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Intern J Biol Macromol 72:421–429. doi:10.1016/j.ijbiomac.2014.08.008

    Article  CAS  Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatog 20:103–108. doi:10.1016/j.chroma.2005.03.127

    Article  Google Scholar 

  • Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M (2009a) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent Additive. Bioresour Technol 100:3366–3373. doi:10.1016/j.biortech.2009.01.061

    Article  CAS  PubMed  Google Scholar 

  • Haddar A, Bougatef A, Agrebi R, Sellami-Kamoun A, Nasri M (2009b) A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21 Purification and characterization. Process Biochem 44:29–35. doi:10.1016/j.procbio.2008.09.003

    Article  CAS  Google Scholar 

  • Horikoshi K (2008) Past, present and future of extremophiles. Extremophiles 12:1–2. doi:10.1007/s00792-007-0127-5

    Article  PubMed  Google Scholar 

  • Ibrahim AS, Al-Salamah AA, Elbadawi YB, El-Tayeb MA, Ibrahim SS (2015) Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes (accepted). Electron J Biotechn. doi:10.1016/j.ejbt.2015.04.001

    Google Scholar 

  • Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S (2012) Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. Bioresour Technol 115:228–236. doi:10.1016/j.biortech.2011.10.081

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Jayashree S, Annapurna B, Seshadri S (2012) Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl Biochem Biotechnol 168:1849–1866. doi:10.1007/s12010-012-9902-6

    Article  CAS  PubMed  Google Scholar 

  • Jellouli K, Ghorbel-Bellaaj O, Ayed H, Manni L, Agrebi R, Nasri M (2011) Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergents additive and for shrimp waste deproteinization. Process Biochem 46:1248–1256. doi:10.1016/j.procbio.2011.02.012

    Article  CAS  Google Scholar 

  • Joshi S, Satyanarayana T (2013) Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol 131:76–85. doi:10.1016/j.biortech.2012.12.124

    Article  CAS  PubMed  Google Scholar 

  • Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl Biochem Biotechnol 38:83–92. doi:10.1007/BF02916414

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Ananthan G, Prabhu AS (2014) Optimization of medium composition for alkaline protease production by Marinobacter sp. GACAS9 using response surface methodology—a statistical approach. Biocatal Agricul Biotech 3:191–197. doi:10.1016/j.bcab.2013.11.005

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jang DJ (2001) Progressive rearrangement of subtilisin Carlsberg into orderly and inflexible conformation with Ca2+ binding. Biophys J 81:2972–2978. doi:10.1016/S0006-3495(01)75937-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall J (1951) Protein measurement with the Folin phenol reagent. J Biological Chem 193:265–275

    CAS  Google Scholar 

  • Maruthiah T, Esakkiraj P, Prabakaran G, Palavesam A, Immanuel G (2013) Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP MSU6. Biocatal Agr Biotech 2:116–119. doi:10.1016/j.bcab.2013.03.001

    Google Scholar 

  • Mathews CK, Van Holde KE (1990) Dynamic of life: catalysis and control of biochemical reactions. The Benjamin/Cummings publishing company, Inc, USA

    Google Scholar 

  • Park JY, Park JE, Park JW, Yoon SM, Lee JS (2012) Purification and characterization of a novel alkaline serine protease secreted by Vibrio metschnikovii. Int J Mol Med 29:263–268. doi:10.3892/ijmm.2011.813

    CAS  PubMed  Google Scholar 

  • Raval VH, Pillai S, Rawa CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 49:955–962. doi:10.1016/j.procbio.2014.03.014

    Article  CAS  Google Scholar 

  • Sana B, Ghosh D, Saha M, Mukherjee J (2006) Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of Sunderbans. Process Biochem 41:208–215. doi:10.1016/j.procbio.2005.09.010

    Article  CAS  Google Scholar 

  • Shah K, Mody K, Keshri J, Jha B (2010) Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat Kunal. J Molecul Catal B: Enzym 67:85–91. doi:10.1016/j.molcatb.2010.07.010

    Article  CAS  Google Scholar 

  • Shankar S, Rao M, Laxman LS (2011) Purification and characterization of an alkaline protease by a new strain of Beauveria sp. Process Biochem 46:579–585. doi:10.1016/j.procbio.2010.10.013

    Article  CAS  Google Scholar 

  • Waghmare SR, Gurav AA, Mali SA, Nadaf NH, Jadhav DB, Sonawane KD (2015) Purification and characterization of novel organic solvent tolerant98 kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Protein Express Purific 107:1–6. doi:10.1016/j.pep.2014.11.002

    Article  CAS  Google Scholar 

  • Wang SL, Yang CH, Liang TW, Yen YH (2008) Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresour Technol 99:3700–3707. doi:10.1016/j.biortech.2007.07.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (12-BIO2899-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelnasser S. S. Ibrahim.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.S.S., Al-Salamah, A.A., El-Badawi, Y.B. et al. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 19, 961–971 (2015). https://doi.org/10.1007/s00792-015-0771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0771-0

Keywords

Navigation