Skip to main content
Log in

A new visualization scheme of chemical energy density and bonds in molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Covalent bond describes electron pairing in between a pair of atoms and molecules. The space is partitioned in mutually disjoint regions by using a new concept of the electronic drop region R D , atmosphere region R A , and the interface S (Tachibana in J Chem Phys 115:3497–3518, 2001). The covalent bond formation is then characterized by a new concept of the spindle structure. The spindle structure is a geometrical object of a region where principal electronic stress is positive along a line of principal axis of the electronic stress that connects a pair of the R D s of atoms and molecules. A new energy density partitioning scheme is obtained using the Rigged quantum electrodynamics (QED). The spindle structure of the stress tensor of chemical bond has been disclosed in the course of the covalent bond formation. The chemical energy density visualization scheme is applied to demonstrate the spindle structures of chemical bonds in H2, C2H6, C2H4 and C2H2 systems.

Figure Field theory of the energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weinberg S (1995) The quantum theory of fields. Cambridge University, Cambridge

    Google Scholar 

  2. Tachibana A (2003) Field energy density in chemical reaction systems. In: Brändas E, Kryachko E (eds) Fundamental perspectives in quantum chemistry: a tribute to the memory of Per-Olov Löwdin, vol 2. Kluwer, Dordrecht, pp 211–239

  3. Tachibana A (2004) Int J Quantum Chem 100:981–993

    Article  CAS  Google Scholar 

  4. Tachibana A (2001) J Chem Phys 115:3497–3518

    Article  CAS  Google Scholar 

  5. Tachibana A (2002) Energy density in materials and chemical reaction systems. In: Sen KD (ed) Reviews in modern quantum chemistry: a celebration of the contributions of Robert Parr, Chap 45, vol 2. World Scientific, Singapore, pp 1327–1366

  6. Murata M, Ikenaga M, Nakamura K, Tachibana A, Matsumoto K (2001) Phys Status Solidi A 188:579–582

    Article  CAS  Google Scholar 

  7. Doi K, Nakamura K, Tachibana A (2001) First-principle theoretical study on reliability of SiO2 thin films under external electric field. In: Ohmi S, Fujita K, Momose HS (eds) Extended abstracts of international workshop on gate insulator 2001. Business Center for Academic Societies Japan, Tokyo, pp 148–151

    Google Scholar 

  8. Egami S, Nakamura K, Tachibana A (2001) First-principle electronic properties of ZrO2 and HfO2 crystals under external electric field. In: Ohmi S, Fujita K, Momose HS (eds) Extended abstracts of international workshop on gate insulator 2001. Business Center for Academic Societies Japan, Tokyo, pp 234–237

    Google Scholar 

  9. Hotta S, Doi K, Nakamura K, Tachibana A (2002) J Chem Phys 117:142–152

    Article  CAS  Google Scholar 

  10. Ikenaga M, Nakamura K, Tachibana A, Matsumoto K (2002) J Cryst Growth 237(239):936–941

    Article  Google Scholar 

  11. Yoshida S, Doi K, Nakamura K, Tachibana A (2003) Appl Surf Sci 216:141–148

    Article  CAS  Google Scholar 

  12. Hasegawa K, Doi K, Nakamura K, Tachibana A (2003) Mol Phys 101:295–307

    Article  CAS  Google Scholar 

  13. Makita T, Doi K, Nakamura K, Tachibana A (2003) J Chem Phys 119:538–546

    Article  CAS  Google Scholar 

  14. Makita T, Nakamura K, Tachibana A, Masusaki H, Matsumoto K, Ishihara Y (2003) Jpn J Appl Phys 42:4540–4541

    Article  CAS  Google Scholar 

  15. Kawakami Y, Kikura T, Doi K, Nakamura K, Tachibana A (2003) Mater Sci Forum 426(432):2399–2404

    Google Scholar 

  16. Kawakami Y, Higashimaki N, Doi K, Nakamura K, Tachibana A (2003) Phys Status Solidi A 195:3–10

    Article  Google Scholar 

  17. Tachibana A (2002) First-principle theoretical study on the dynamical electronic characteristics of electromigration in the bulk, surface and grain boundary. In: Baker SP (ed) Stress induced phenomena in metallization. American Institute of Physics, New York, pp 105–116

    Google Scholar 

  18. Doi K, Nakamura K, Tachibana A (2003) Appl Surf Sci 216:463–470

    Article  CAS  Google Scholar 

  19. Doi K, Iguchi K, Nakamura K, Tachibana A (2003) Phys Rev B 67:115124/1–115124/14

    Article  Google Scholar 

  20. Huntington HB, Grone AR (1961) J Phys Chem Solids 20:76–87

    Article  CAS  Google Scholar 

  21. Blech IA, Kinsbron E (1975) Thin Solid Films 25:327–334

    Article  CAS  Google Scholar 

  22. Blech IA (1976) J Appl Phys 47:1203–1208

    Article  CAS  Google Scholar 

  23. Black JR (1969) IEEE Trans Electron Devices ED 16:338–347

    CAS  Google Scholar 

  24. Ho PS, Kwok T (1989) Rep Prog Phys 52:301–348

    Article  CAS  Google Scholar 

  25. Thompson CV, Lloyd JR (1993) MRS Bull, pp 19–25

  26. Kawasaki H, Gall M, Jawarani D, Hernandez R, Capasso C (1998) Thin Solid Films 320:45–51

    Article  CAS  Google Scholar 

  27. Bosvieux C, Friedel J (1962) J Phys Chem Solids 23:123–136

    Article  CAS  Google Scholar 

  28. Kumar P, Sorbello RS (1975) Thin Solid Films 25:25–35

    Article  CAS  Google Scholar 

  29. Sorbello RS, Dasgupta BB (1980) Phys Rev B 21:2196–2200

    Article  CAS  Google Scholar 

  30. Lodder A (1984) J Phys F Met Phys 14:2943–2953

    Article  CAS  Google Scholar 

  31. Lodder A (1989) Solid State Commun 71:259–262

    Article  Google Scholar 

  32. Sorbello RS (1998) Solid State Phys 51:159–231

    CAS  Google Scholar 

  33. Lodder A, Dekker JP (1998) The electromigration force in metallic bulk. In: Okabayashi H, Shingubara S, Ho PS (eds) Stress induced phenomena in metallization. American Institute of Physics, New York, pp 315–328

    Google Scholar 

  34. Iguchi K, Tachibana A (2000) Surf Sci 159(160):167–173

    Article  Google Scholar 

  35. Pauli W (1980) General principles of quantum mechanics. Springer, New York

    Google Scholar 

  36. Heitler W (1984) The quantum theory of radiation. Dover, New York

    Google Scholar 

  37. Nakamura K, Doi K, Tachibana A (2004) Molecular regional DFT program package, Version 1. Tachibana Lab, Kyoto University, Kyoto, Japan

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, M Al-Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.04. Gaussian Inc., Wallingford, CT, USA

Download references

Acknowledgements

This work has been supported in part by Center of Excellence for Research and Education on “Complex Functional Mechanical System” as a COE Program of the Ministry of Education, Culture, Science and Technology of Japan, for which we express our gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitomo Tachibana.

Appendix

Appendix

In the Rigged QED theory, the interaction of a system and its environment is tractable using regional charge and current densities.

Let a system A be embedded in the environment medium M. The corresponding gauge potentials [2] are the regional integrals of the charge and transversal current densities, defined as follows

$$ \hat A_{0_{\text{A}} } (\vec r) = \int\limits_{\text{A}} {{\text{d}}^3 \vec s\frac{{\hat \rho (\vec s)}} {{\left| {\vec r - \vec s} \right|}}} , $$
(100)
$$ \hat A_{0_{\text{M}} } (\vec r) = \int\limits_{\text{M}} {{\text{d}}^3 \vec s\frac{{\hat \rho (\vec s)}} {{\left| {\vec r - \vec s} \right|}}} , $$
(101)

and

$$ \hat {\vec A}_{\text{A}} (\vec r) = \frac{1} {c}\int\limits_{\text{A}} {{\text{d}}^3 \vec s\frac{{\hat {\vec j}_{\text{T}} (\vec s,u)}} {{\left| {\vec r - \vec s} \right|}},} $$
(102)
$$ \hat {\vec A}_{\text{M}} (\vec r) = \frac{1} {c}\int\limits_{\text{M}} {{\text{d}}^3 \vec s\frac{{\hat {\vec j}_{\text{T}} (\vec s,u)}} {{\left| {\vec r - \vec s} \right|}}} , $$
(103)

where the subscript A or M of the integral sign denotes the regional integrals confined to the region A or M, respectively.

Since the regions A and M altogether span the whole space, we have

$$ \hat A_0 (\vec r) = \hat A_{0_{\text{A}} } (\vec r) + \hat A_{0_{\text{M}} } (\vec r), $$
(104)
$$ \hat {\vec A}(\vec r) = \hat {\vec A}_{\text{A}} (\vec r) + \hat {\vec A}_{\text{M}} (\vec r) + \hat {\vec A}_{{\text{radiation}}} (\vec r), $$
(105)

where \(\hat {\vec A}_{{\text{radiation}}} (\vec r)\) denotes that portion of the radiation field.

The electric field \(\hat {\vec E}(\vec r)\) is decomposed into the electric displacement \(\hat {\vec D}(\vec r)\) of the medium M and the polarization \(\hat {\vec P}(\vec r)\) of the system A, defined, respectively, as

$$ \hat {\vec D}(\vec r) = - {\text{grad}}\hat A_{0_{\text{M}} } (\vec r) - \frac{1} {c}\frac{\partial } {{\partial t}}\hat {\vec A}_{\text{M}} (\vec r), $$
(106)
$$ \hat {\vec P}(\vec r) = \frac{1} {{4\pi }}{\text{grad}}\hat A_{0_{\text{A}} } (\vec r) + \frac{1} {{4\pi c}}\frac{\partial } {{\partial t}}\hat {\vec A}_{\text{A}} (\vec r), $$
(107)

so that we have

$$ \hat {\vec E}(\vec r) = - {\text{grad}}\hat A_0 (\vec r) - \frac{1} {c}\frac{\partial } {{\partial t}}\hat {\vec A}(\vec r) = \hat {\vec D}(\vec r) - 4\pi \hat {\vec P}(\vec r) - \frac{1} {c}\frac{\partial } {{\partial t}}\hat {\vec A}_{{\text{radiation}}} (\vec r). $$
(108)

Likewise, let the magnetic field \(\hat {\vec H}(\vec r)\) of the medium M and the magnetization \(\hat {\vec M}(\vec r)\) of the system A be defined, respectively, as

$$ \hat {\vec H}(\vec r) = {\text{rot}}\hat {\vec A}_{\text{M}} (\vec r), $$
(109)
$$ \hat {\vec M}(\vec r) = \frac{1} {{4\pi }}{\text{rot}}\hat {\vec A}_{\text{A}} (\vec r), $$
(110)

then we have

$$ \hat {\vec B}(\vec r) = {\text{rot}}\hat {\vec A}(\vec r) = \hat {\vec H}(\vec r) + 4\pi \hat {\vec M}(\vec r) + {\text{rot}}\hat {\vec A}_{{\text{radiation}}} (\vec r). $$
(111)

The regional charge densities are then represented, respectively, as

$$ \hat \rho _{\text{A}} (\vec r) = - \frac{1} {{4\pi }}\Delta \hat A_{0_{\text{A}} } (\vec r), $$
(112)
$$ \hat \rho _{\text{M}} (\vec r) = - \frac{1} {{4\pi }}\Delta \hat A_{0_{\text{M}} } (\vec r), $$
(113)

and hence

$$ \hat \rho (\vec r) = \hat \rho _{\text{A}} (\vec r) + \hat \rho _{\text{M}} (\vec r). $$
(114)

Likewise, the regional current densities are represented as

$$ \hat {\vec j}_{\text{A}} (\vec r) = \frac{c} {{4\pi }}\left( {\frac{1} {c}{\text{grad}}\frac{\partial } {{\partial t}}\hat A_{0_{\text{A}} } (\vec r) + \square \hat {\vec A}_{\text{A}} (\vec r)} \right) = \frac{\partial } {{\partial t}}\hat {\vec P}(\vec r) + c{\text{rot}}\hat {\vec M}(\vec r), $$
(115)
$$ \hat {\vec j}_{\text{M}} (\vec r) = \frac{c} {{4\pi }}\left( {\frac{1} {c}{\text{grad}}\frac{\partial } {{\partial t}}\hat A_{0_{\text{M}} } (\vec r) + \square \hat {\vec A}_{\text{M}} (\vec r)} \right), $$
(116)

and hence

$$ \hat {\vec j}(\vec r) = \hat {\vec j}_{\text{A}} (\vec r) + \hat {\vec j}_{\text{M}} (\vec r) = \frac{\partial } {{\partial t}}\hat {\vec P}(\vec r) + c{\text{rot}}\hat {\vec M}(\vec r) + \hat {\vec j}_{\text{M}} (\vec r). $$
(117)

The regional decomposition of the longitudinal and transversal components of the current densities are represented as follows

$$ \hat {\vec j}(\vec r) = \hat {\vec j}_{\text{L}} (\vec r) + \hat {\vec j}_{\text{T}} (\vec r), $$
(118)

with

$$ \hat {\vec j}_{\text{L}} (\vec r) = \hat {\vec j}_{{\text{L}}_{\text{A}} } (\vec r) + \hat {\vec j}_{{\text{L}}_{\text{M}} } (\vec r), $$
(119)
$$ \hat {\vec j}_{\text{T}} (\vec r) = \hat {\vec j}_{{\text{T}}_{\text{A}} } (\vec r) + \hat {\vec j}_{{\text{T}}_{\text{M}} } (\vec r), $$
(120)

where

$$ \hat {\vec j}_{{\text{L}}_{\text{A}} } (\vec r) = \frac{c} {{4\pi }} \cdot \frac{1} {c}{\text{grad}}\frac{\partial } {{\partial t}}\hat A_{0_{\text{A}} } (\vec r), $$
(121)
$$ \hat {\vec j}_{{\text{L}}_{\text{M}} } (\vec r) = \frac{c} {{4\pi }} \cdot \frac{1} {c}{\text{grad}}\frac{\partial } {{\partial t}}\hat A_{\text{M}} (\vec r), $$
(122)
$$ \hat {\vec j}_{{\text{T}}_{\text{A}} } (\vec r) = \frac{c} {{4\pi }} \cdot \square \hat {\vec A}_{\text{A}} (\vec r), $$
(123)
$$ \hat {\vec j}_{{\text{T}}_{\text{M}} } (\vec r) = \frac{c} {{4\pi }} \cdot \square \hat {\vec A}_{\text{M}} (\vec r). $$
(124)

Using Eqs. 121, 122, 123 and 124, we have the alternative forms of Eqs. 16 and 17, respectively, as

$$ \hat {\vec j}_{\text{A}} (\vec r) = \hat {\vec j}_{{\text{L}}_{\text{A}} } (\vec r) + \hat {\vec j}_{{\text{T}}_{\text{A}} } (\vec r), $$
(125)
$$ \hat {\vec j}_{\text{M}} (\vec r) = \hat {\vec j}_{{\text{L}}_{\text{M}} } (\vec r) + \hat {\vec j}_{{\text{T}}_{\text{M}} } (\vec r). $$
(126)

The linear response properties of the system A under the interaction with the environment medium M may formally be represented with obvious notation as follows

$$ \hat {\vec D}(\vec r) = \left( {1 + 4\pi \hat {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\chi }} _{\text{e}} (\vec r)} \right)\hat {\vec E}(\vec r) = \hat {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\varepsilon }} (\vec r)\hat {\vec E}(\vec r), $$
(127)
$$ \hat {\vec B}(\vec r) = \left( {1 + 4\pi \hat {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\chi }} _m (\vec r)} \right)\hat {\vec H}(\vec r) = \hat {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\mu }} (\vec r)\hat {\vec H}(\vec r), $$
(128)
$$ \hat {\vec j}(\vec r) = \hat {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {G}} (\vec r)\hat {\vec E}(\vec r). $$
(129)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, A. A new visualization scheme of chemical energy density and bonds in molecules. J Mol Model 11, 301–311 (2005). https://doi.org/10.1007/s00894-005-0260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0260-y

Keywords

Navigation