Skip to main content
Log in

Linear and nonlinear optical properties of azobenzene derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The results of computations of spectroscopic parameters of lowest–lying electronic excited states of azobenezene derivatives are presented. The analysis of experimentally recorded spectra was supported by quantum chemical calculations using density functional theory. The theoretically determined resonant (two-photon absorption probabilities) and non-resonant (first-order hyperpolarisability) nonlinear optical properties are also discussed, with an eye towards the performance of recently proposed long-range corrected (LRC) schemes (LC–BLYP and CAM–B3LYP functionals).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zaleśny R, Matczyszyn K, Kaczmarek A, Bartkowiak W, Cysewski P (2007) J Mol Model 13:785

    Article  Google Scholar 

  2. Granucci G, Persico M (2007) Theor Chem Acc 117:1131

    Article  CAS  Google Scholar 

  3. Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G (2004) J Am Chem Soc 126:3234

    Article  CAS  Google Scholar 

  4. Cattaneo P, Persico M (1999) Phys Chem Chem Phys 1:4739

    Article  CAS  Google Scholar 

  5. Ishikawa T, Noro T, Shoda T (2001) J Chem Phys 115:7503

    Article  CAS  Google Scholar 

  6. Boeckmann M, Doltsinis N, Marx D, Phys Rev Lett, submitted

  7. Crecca CR, Roitberg AE (2006) J Phys Chem A 110:8188

    Article  CAS  Google Scholar 

  8. Kawata S, Kawata Y (2000) Chem Rev 100:1777

    Article  CAS  Google Scholar 

  9. Ikeda T, Tsutsumi O (1995) Science 268:1873

    Article  CAS  Google Scholar 

  10. Liu ZF, Hashimoto K, Fujishima K (1990) Nature 347:658

    Article  CAS  Google Scholar 

  11. Hättig C, Hald K (2002) Phys Chem Chem Phys 4:2111

    Article  Google Scholar 

  12. Grasso D, Millefiori S, Fasone S (1975) Spectrochim Acta A 31:187

    Article  Google Scholar 

  13. Pedersen TG, Ramanujam PS, Johansen PM, Hvilsted S (1998) J Opt Soc Am B 15:2721

    Article  CAS  Google Scholar 

  14. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135

    Article  CAS  Google Scholar 

  15. Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206

    Article  Google Scholar 

  16. Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427

    Article  CAS  Google Scholar 

  17. Appel H, Gross EKU, Burke K (2003) Phys Rev Lett 90:043005

    Article  CAS  Google Scholar 

  18. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433

    Article  CAS  Google Scholar 

  19. Sałek P, Vahtras O, Helgaker T, Ågren H (2002) J Chem Phys 117:9630

    Article  Google Scholar 

  20. Jansik B, Sałek P, Jonsson D, Vahtras O, Ågren H (2005) J Chem Phys 122:054107

    Article  Google Scholar 

  21. Miura M, Aoki Y, Champagne B (2007) J Chem Phys 127:084103

    Article  Google Scholar 

  22. Rudberg E, Sałek P, Helgaker T, Ågren H (2005) J Chem Phys 123:184108

    Article  Google Scholar 

  23. Yanai T, Tew DP, Handy NH (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  24. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnaes OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558

    Article  CAS  Google Scholar 

  25. Jacquemin D, Perpéte EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105

    Article  Google Scholar 

  26. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  27. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  28. Hättig C (2005) Phys Chem Chem Phys 7:59

    Article  Google Scholar 

  29. Gaussian O3, Revision C.O2, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT (2004)

  30. Cancés MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  31. DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html

  32. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  33. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111

    Article  Google Scholar 

  34. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comp Chem 11:82

    Article  CAS  Google Scholar 

  35. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Article  Google Scholar 

  36. Jacquemin D, Bouhy M, Perpéte EA (2006) J Chem Phys 124:204321

    Article  Google Scholar 

  37. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpéte EA (2005) J Am Chem Soc 128:2072

    Article  Google Scholar 

  38. Jacquemin D, Perpéte EA, Scuseria G, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123

    Article  CAS  Google Scholar 

  39. Perpéte EA, Wahtelet V, Preat J, Lambert C, Jacquemin D (2006) J Chem Theory Comput 2:434

    Article  Google Scholar 

  40. Monson PR, McClain WM (1970) J Chem Phys 53:29

    Article  CAS  Google Scholar 

  41. Champagne B, Perpète EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489

    Article  CAS  Google Scholar 

  42. Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104:4755

    Article  CAS  Google Scholar 

  43. van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694

    Article  Google Scholar 

  44. De Boni L, Misoguti L, Zilio SC, Mendonça C (2005) ChemPhysChem 6:1121

    Article  Google Scholar 

  45. Antonov L, Kamada K, Ohta K, Kamounah FS (2003) Phys Chem Chem Phys 5:1193

    Article  CAS  Google Scholar 

  46. Ohta K, Antonov L, Yamada S, Kamada K (2007) J Chem Phys 127:084504

    Article  Google Scholar 

  47. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) J Chem Phys 128:114108

    Article  Google Scholar 

  48. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  49. Bartkowiak W (2006) Solvatochromism and nonlinear optical properties of donor–acceptor π-conjugated molecules. In: Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) Non-linear optical properties of matter. Springer, Berlin

Download references

Acknowledgements

The authors gratefully acknowledge the allotment of CPU time at the Poznan Supercomputing and Networking Centre (PCSS), ACK Cyfronet and Wroclaw Center of Networking and Supercomputing (WCSS). The work was (partly) supported by the European Commission through the Human Potential Programme (Marie-Curie RTN BIMORE, GRANT No. MRTN-CT-2006-035859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaczmarek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32.6 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawczyk, P., Kaczmarek, A., Zaleśny, R. et al. Linear and nonlinear optical properties of azobenzene derivatives. J Mol Model 15, 581–590 (2009). https://doi.org/10.1007/s00894-008-0436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0436-3

Keywords

Navigation