Skip to main content
Log in

Structure and electronic absorption spectra of nematogenic alkoxycinnamic acids – a comparative study based on semiempirical and DFT methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structure of nematogenic p-n-Alkoxy cinnamic acids (nOCAC) with various alkyl chain carbon atoms (n = 2, 4, 6, 8) has been optimized using density functional B3LYP with 6-31+G (d) basis set using crystallographic geometry as input. Using the optimized geometry, electronic structure of the molecules has been evaluated using the semiempirical methods and DFT calculations. Molecular charge distribution and phase stability of these systems have been analyzed based on Mulliken and Löwdin population analysis. The electronic absorption spectra of nOCAC molecules have been simulated by employing DFT method, semiempirical CNDO/S and INDO/S parameterizations. Two types of calculations have been performed for model systems containing single and double molecules of nOCAC. UV-Visible spectra have been calculated for all single molecules. The UV stability of the molecules has been discussed in light of the electronic transition oscillator strength (f). The dimer complexes of higher homologues (n = 6, 8) have also been reported to enable the comparison between single and double molecules.

The electronic structures of (a) 2OCAC, (b) 4OCAC, (c) 6OCAC, and (d) 8OCAC molecules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramamoorthy A (2007) Thermotropic liquid crystals: recent advances. Springer, Berlin

    Book  Google Scholar 

  2. Zhang Z, Guo H (2010) J Chem Phys 133:144911–144923

    Article  Google Scholar 

  3. Gorkunov MV, Osipov MA, Kocot A, Vij JK (2010) Phys Rev E 81(061702):1–10

    Google Scholar 

  4. Druzbicki K, Mikuli E, Minoslawa D, Chrusciel O (2010) Vib Spectroscopy 52:54–62

    Article  CAS  Google Scholar 

  5. Castari M, Bosco A, Ferrarini A (2009) J Chem Phys 131:054104–054120

    Article  Google Scholar 

  6. Peroukidis SD, Vanakaras AG, Photinos DJ (2008) J Phys Chem B 112:12761–12767

    Article  CAS  Google Scholar 

  7. Ojha DP (2006) J Mol Model 12:161–167

    Article  CAS  Google Scholar 

  8. Bringmann G, Maksimenka K, Comar JM, Knauer M, Bruhn T (2007) Tetrahedron 63:9810–9824

    Article  CAS  Google Scholar 

  9. Pecul M, Ruud K, Helgaker T (2004) Chem Phys Lett 388:110–119

    Article  CAS  Google Scholar 

  10. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  11. Peng HL, Payton JL, Protasiewicz JD, Simpson MC (2009) J Phys Chem A 113:7054–7063

    Article  CAS  Google Scholar 

  12. Bouman T, Lightner DA (1976) J Am Chem Soc 98:3145–3154

    Article  CAS  Google Scholar 

  13. Volosov AP, Zublov VA (1977) Theor Chim Acta 44:375–384

    Article  CAS  Google Scholar 

  14. Komori H, Inai Y (2006) J Phys Chem A 110:9099–9107

    Article  CAS  Google Scholar 

  15. Kawmura SI, Morita T, Kimura S (2006) Sci Technol Adv Mater 7:544–549

    Article  Google Scholar 

  16. Bryan RF, Hartley P (1981) Mol Cryst Liq Cryst 69:47–69

    Article  CAS  Google Scholar 

  17. Hohenberg P, Kohn W (1965) Phys Rev 136:B864–B871

    Article  Google Scholar 

  18. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1188

    Article  Google Scholar 

  19. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  20. Botek E, Champagne B (2007) J Chem Phys 127:204101–201110

    Article  Google Scholar 

  21. Danel KS, Gasiorski P, Matusiewicz M, Calus S, Uchacz T, Kityk AV (2010) Spectro Chim Acta 77:16–23

    Article  CAS  Google Scholar 

  22. Neese FA (2003) J Chem Phys 119:9428–9443

    Article  CAS  Google Scholar 

  23. Tejerina B, Reimers J (2007) CNDO/INDO. doi:10254/nanohub-r3352.9

  24. Lakshmi Praveen P, Ojha DP (2011) Mat Chem Phys 126:248–252

    Article  Google Scholar 

  25. Eikelschulte F, Yakovenko SY, Paschek D, Geiger A (2007) Liq Cryst 27:1137–1146

    Article  Google Scholar 

  26. Sakagami S, Koga T, Takase A (2001) Liq Cryst 28:1199–1202

    Article  CAS  Google Scholar 

  27. Hanemann T, Bohm MC, Haase W, Wu ST (1992) Liq Cryst 11:917–927

    Article  CAS  Google Scholar 

  28. Markovic Z, Manojlovic N, Zlatanovic S (2008) J Ser Soc Comput Mech 2:73–79

    Google Scholar 

  29. Quotschalla U, Hanemann T, Bohm MC, Haase W (1991) Mol Cryst Liq Cryst 207:103–116

    Article  CAS  Google Scholar 

  30. Wawzonek S, Lyons P (1950) J Org Chem 15:593–599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support rendered by the Council of Scientific & Industrial Research (CSIR), and University Grants Commission (UGC), New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durga Prasad Ojha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen, P.L., Ojha, D.P. Structure and electronic absorption spectra of nematogenic alkoxycinnamic acids – a comparative study based on semiempirical and DFT methods. J Mol Model 18, 1513–1521 (2012). https://doi.org/10.1007/s00894-011-1171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1171-8

Keywords

Navigation