Skip to main content
Log in

DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)–AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr2(AcAc)2(OH)4(OH)2br 9 and the monooxo-bridged complex Zr2(AcAc)2(OH)4Obr·2H2O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand–metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoffmann S, Klee M, Waser R (1995) Integr Ferroelectr 10:155–164

    Article  CAS  Google Scholar 

  2. Klee M, Mackens U, Hermann W, Bathelt E (1995) Integr Ferroelectr 11:247–258

    Article  CAS  Google Scholar 

  3. Reisfeld R, Zelner M, Patra A (2000) J Alloys Compd 300:147–151

    Article  Google Scholar 

  4. Kuratani K, Mizuhata M, Kajinami A, Deki S (2006) J Alloys Compd 408:711–716

    Article  Google Scholar 

  5. Quan ZW, Wang LS, Lin J (2005) Mater Res Bull 40:810–820

    Article  CAS  Google Scholar 

  6. Liu HQ, Wang LL, Chen SG, Zou BS (2008) J Alloys Compd 448:336–339

    Article  CAS  Google Scholar 

  7. Petkova N, Dlugocz S, Gutzov S (2011) J Non-Cryst Solids 357:1547–1551

    Article  CAS  Google Scholar 

  8. Li Q, Zhong XK, Hu JY, Kang W (2008) Prog Org Coat 63:222–227

    Article  CAS  Google Scholar 

  9. Loukova GV, Huhn W, Vasiliev VP, Smirnov VA (2007) J Phys Chem A 111:4117–4121

    Article  CAS  Google Scholar 

  10. Kanazhevskii VV, Shmachkova VP, Kotsarenko NS, Kolomiichuk VN, Kochubei DI (2006) J Struct Chem 47:453–457

    Article  CAS  Google Scholar 

  11. Devia DH, Sykes AG (1981) Inorg Chem 20:910–913

    Article  CAS  Google Scholar 

  12. Bauer M, Gastl C, Koppl C, Kickelbick G, Bertagnolli H (2006) Monatsh Chem 137:567–581

    Article  CAS  Google Scholar 

  13. Bauer M, Muller S, Kickelbick G, Bertagnolli H (2007) New J Chem 31:1950–1959

    Article  CAS  Google Scholar 

  14. Spijksma GI, Seisenbaeva GA, Fischer A, Bouwmeester HJM, Blank DHA, Kessler VG (2009) J Sol-Gel Sci Technol 51:10–22

    Article  CAS  Google Scholar 

  15. Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxides. Academic, New York

  16. Muha GM, Vaughan PA (1960) J Chem Phys 33:194–199

    Article  CAS  Google Scholar 

  17. Gutzov S, Borger A, Becker KD (2007) Phys Chem Chem Phys 9:491–496

    Article  CAS  Google Scholar 

  18. Schmidt W (2000) Optische spektroskopie. Wiley-VCH, Weinheim

  19. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann EE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VK, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  22. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  23. Zhurko GA, Zhurko DA (2011) ChemCraft software package. http://www.chemcraftprog.com

  24. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  25. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  26. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  27. Schirmer J (1982) Phys Rev A 26:2395–2416

    Article  CAS  Google Scholar 

  28. Trofimov AB, Schirmer J (1995) J Phys B 28:2299–2324

    Article  CAS  Google Scholar 

  29. Hattig C, Weigend F (2000) J Chem Phys 113:5154–5161

    Article  CAS  Google Scholar 

  30. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  31. Hattig C (2003) J Chem Phys 118:7751–7761

    Article  CAS  Google Scholar 

  32. Kohn A, Hattig C (2003) J Chem Phys 119:5021–5036

    Article  CAS  Google Scholar 

  33. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Cueto LF, Sanchez E, Torres-Martinez LM, Hirata GA (2005) Mater Charact 55:263–271

    Article  CAS  Google Scholar 

  36. Jones AC (2002) J Mater Chem 12:2576–2590

    Article  CAS  Google Scholar 

  37. Kessler VG, Seisenbaeva GA, Werndrup P, Parola S, Spijksma GI (2005) Mater Sci Poland 23:69–78

    CAS  Google Scholar 

  38. Hoebbel D, Reinert T, Schmidt H, Arpac E (1997) J Sol-Gel Sci Technol 10:115–126

    Article  CAS  Google Scholar 

  39. Morris S, Almond MJ, Cardin CJ, Drew MGB, Rice DA, Zubavichus Y (1998) Polyhedron 17:2301–2307

    Article  CAS  Google Scholar 

  40. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, Oxford

    Google Scholar 

  41. Bradley DC, Thornton P (1979) Zirconium and hafnium. Pergamon, Oxford

    Google Scholar 

  42. Radtke A, Piszczek P, Muziol T, Wojtczak A, Grodzicki A (2010) Struct Chem 21:367–375

    Article  CAS  Google Scholar 

  43. Ekberg C, Kallvenius G, Albinsson Y, Brown PL (2004) J Sol Chem 33:47–79

    Article  CAS  Google Scholar 

  44. Linstrom PJ (2011) NIST Chemistry WebBook. http://webbook.nist.gov/chemistry

  45. Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  46. Tarte P (1958) Spectrochim Acta 13:107–119

    Article  CAS  Google Scholar 

  47. Piszczek P, Grodzicki A, Richert M, Radtke A (2005) Mater Sci Poland 23:663–670

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Fund of Bulgaria (NSFB) under grants DO-02-233/2008 and DCVP-02/2/2009. S.G. and N.D. were supported by grant TK 02-26/2009 from the NSFB. All computations were performed on the MADARA cluster of the Bulgarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivelina Georgieva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, I., Danchova, N., Gutzov, S. et al. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials. J Mol Model 18, 2409–2422 (2012). https://doi.org/10.1007/s00894-011-1257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1257-3

Keywords

Navigation