Skip to main content
Log in

Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The influence of different sorption sites of isoreticular metal-organic frameworks (IRMOFs) on interactions with explosive molecules is investigated. Different connector effects are taken into account by choosing IRMOF-1(Be) (IRMOF-1 with Zn replaced by Be), and two high explosive molecules: 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP). The key interaction features (structural, electronic and energetic) of selected contaminants were analyzed by means of density functional calculations. The interaction of RDX and TATP with different IRMOF-1(Be) fragments is studied. The results show that physisorption is favored and occurs due to hydrogen bonding, which involves the C-H groups of both molecules and the carbonyl oxygen atoms of IRMOF-1(Be). Additional stabilization of RDX and TATP arises from weak electrostatic interactions. Interaction with IRMOF-1(Be) fragments leads to polarization of the target molecules. Of the molecular configurations we have studied, the Be-O-C cluster connected with six benzene linkers (1,4-benzenedicarboxylate, BDC), possesses the highest binding energy for the studied explosives (-16.4 kcal mol-1 for RDX and -12.9 kcal mol-1 for TATP). The main difference was discovered to be in the preferable adsorption site for adsorbates (RDX above the small and TATP placed above the big cage). Based on these results, IRMOF-1 can be suggested as an effective material for storage and also for separation of similar explosives. Hydration destabilizes most of the studied adsorption systems by 1-3 kcal mol-1 but it leads to the same trend in the binding strength as found for the non-hydrated complexes.

RDX adsorbed on IRMOF-1(Be) (B97-D/6-31G(d))

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hiyoshi RI, Nakamura J, Brill TB (2007) Propellants, explosives. Pyrotechnics 32:127–134

    Article  CAS  Google Scholar 

  2. Kaye SM (ed) (1978) Encyclopedia of explosives and related items. PATR 2700 Vol. 8. U.S. Army Armament Research & Devlop. Comp: Dover, NJ, 203

  3. Hon DNS (1985) Pulp & Paper Canada 1985, 86:129–131

  4. Reutter DJ, Bender ED, Rudolph RL (1983) Proceed Int Symp Analysis & Detection of Explosives. U.S. Dept. Justice. FBI, Quantico, VA, p 149

    Google Scholar 

  5. Zitrin S, Kraus S, Glattstein B (1983) Proceed Int Symp Analysis & Detection of Explosives, US Dept. Justice. FBI, Quantico, VA, p 137

    Google Scholar 

  6. Swadley MJ, Li T (2007) J Chem Theor Comput 3:505–513

    Article  CAS  Google Scholar 

  7. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  8. Boyd S, Gravelle M, Politzer P (2006) J Chem Phys 124:104508–104517

    Article  Google Scholar 

  9. Harris NJ, Lammertsma K (1997) J Am Chem Soc 119:6583–6589

    Article  CAS  Google Scholar 

  10. Rice BM, Chabalowski CF (1997) J Phys Chem A 101:8720–8726

    Article  CAS  Google Scholar 

  11. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523–527

    Article  CAS  Google Scholar 

  12. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keefe M, Yaghi OM (2002) Science 295:469–472

    Article  CAS  Google Scholar 

  13. Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Microporous Mesoporous Mater 58:105–114

    Article  CAS  Google Scholar 

  14. Kepert CJ, Rosseinsky MJ (1999) J Chem Soc Chem Commun 4:375–376

    Google Scholar 

  15. Tafipolsky M, Amirjalayer S, Schmid R (2007) J Comput Chem 28:1169–1176

    Article  CAS  Google Scholar 

  16. Mattesini M, Soler J, Yndurain F (2006) Phys Rev B 73:094111–094112

    Article  Google Scholar 

  17. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279

    Article  CAS  Google Scholar 

  18. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127–1129

    Article  CAS  Google Scholar 

  19. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714

    Article  CAS  Google Scholar 

  20. Fuentes-Cabrera M, Nicholson DM, Sumpter BG, Widom M (2005) J Chem Phys 123:124713–124715

    Article  Google Scholar 

  21. Hausdorf S, Baitalow F, Bohle T, Rafaja D, Mertens FORL (2010) J Am Chem Soc 132:10978–10981

    Article  CAS  Google Scholar 

  22. Sagara T, Klassen J, Ganz E (2004) J Chem Phys 121:12543–12547

    Article  CAS  Google Scholar 

  23. Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjørgen M, Hafizovic J, Lillerud KP (2005) J Phys Chem B 109:18237–18242

    Article  CAS  Google Scholar 

  24. Yang QY, Zhong CL (2005) J Phys Chem B 109:11862–11864

    Article  CAS  Google Scholar 

  25. Belof JL, Stern AC, Eddaoudi M, Space B (2007) J Am Chem Soc 129:15202–15210

    Article  CAS  Google Scholar 

  26. Han SS, Goddard WA III (2007) J Am Chem Soc 129:8422–8423

    Article  CAS  Google Scholar 

  27. Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666–5667

    Article  CAS  Google Scholar 

  28. Rowsell JLC, Eckert J, Yaghi OM (2005) J Am Chem Soc 127:14904–14910

    Article  CAS  Google Scholar 

  29. Martín-Calvo A, García-Pérez E, Castillo CM, Calero S (2008) Phys Chem Chem Phys 10:7085–7091

    Article  Google Scholar 

  30. Dubbeldam D, Frost H, Walton KS, Snurr RQ (2007) Fluid Phase Equilibria 261:152–161

    Article  CAS  Google Scholar 

  31. Amirjalayer S, Schmid R (2009) Microporous Mesoporous Mater 125:90–96

    Article  CAS  Google Scholar 

  32. Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, Thommes M (2010) Microporous Mesoporous Mater 129:345–353

    Article  CAS  Google Scholar 

  33. Wells BA, Liang Z, Marshall M, Chaffee AL (2009) Energ Proc 1:1273–1280

    Article  CAS  Google Scholar 

  34. Pawsey S, Moudrakovski I, Ripmeester J, Wang LO, Exarhos GJ, Rowsell JLC, Yaghi OM (2007) J Phys Chem C 111:6060–6067

    Article  CAS  Google Scholar 

  35. Xiong R, Fern JT, Keffer DJ, Fuentes-Cabrera MA, Nicholson DM (2009) Mol Simul 35:910–919

    Article  CAS  Google Scholar 

  36. Odbadrakh K, Lewis JP, Nicholson DM, Petrova T, Michalkova A, Leszczynski J (2020) J Phys Chem C 114:3732–3736

    Article  Google Scholar 

  37. Xiong R, Keffer DJ, Fuentes-Cabrera M, Nicholson DM, Michalkova A, Petrova T, Leszczynski T, Odbadrakh K, Doss BL, Lewis JP (2010) Langmuir 26:5942–5950

    Article  CAS  Google Scholar 

  38. Xiong R, Odbadrakh K, Michalkova A, Luna JP, Petrova T, Keffer DJ, Nicholson DM, Fuentes-Cabrera MA, Lewis JP, Leszczynski J (2010) Sens Actuators B Chem 143:459–468

    Article  Google Scholar 

  39. Odbadrakh K, Lewis JP, Nicholson DM (2010) J Phys Chem C 114:7535–7540

    Article  CAS  Google Scholar 

  40. Dubnikova F, Kosloff R, Zeiri Y, Karpas Z (2002) J Phys Chem A 106:4951–4956

    Article  CAS  Google Scholar 

  41. Munoz RAA, Lu D, Cagan A, Wang J (2007) Analyst 132:560–565

    Article  CAS  Google Scholar 

  42. Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559–565

    Article  CAS  Google Scholar 

  43. Efremenko I, Zach R, Zeiri Y (2007) J Phys Chem C 111:11903–11911

    Article  CAS  Google Scholar 

  44. Petrova T, Michalkova A, Leszczynski J (2009) Struct Chem 21:391–404

    Article  Google Scholar 

  45. Burrows AD, Cassar K, Friend RMW, Mahon MF, Rigby SP, Warren JE (2005) Cryst Eng Comm 7:548–550

    CAS  Google Scholar 

  46. Schröck K, Schröder F, Heyden M, Fischer RA, Havenith M (2008) Phys Chem Chem Phys 10:4732–4739

    Article  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc. Wallingford, CT

  48. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univ Press, Oxford

    Google Scholar 

  49. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  50. Zhidomirov GM, Shubin AA, Milov MA, Kazansky VB, van Santen RA, Hensen EJM (2008) J Phys Chem C 112:3321–3326

    Article  CAS  Google Scholar 

  51. Yuan S, Shi W, Li B, Wang J, Jiao H, Li YW (2005) J Phys Chem A 109:2594–2601

    Article  CAS  Google Scholar 

  52. Castella-Ventura M, Akacem Y, Kassab E (2008) J Phys Chem C 112:19045–19054

    CAS  Google Scholar 

  53. Soscun H, Castellano O, Hernandez J (2004) J Phys Chem B 108:5620–5626

    Article  CAS  Google Scholar 

  54. Pelmenschikov A, Leszczynski J (1999) J Phys Chem B 103:6886–6890

    Article  CAS  Google Scholar 

  55. Gorb L, Lutchyn R, Zub Y, Leszczynska D, Leszczynski D (2006) Theochem 766:151–157

    Article  CAS  Google Scholar 

  56. Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007–5012

    Article  CAS  Google Scholar 

  57. Michalkova A, Szymczak JJ, Leszczynski J (2005) Struct Chem 16:325–337

    Article  CAS  Google Scholar 

  58. Sauer J (1989) Chem Rev 89:199–255

    Article  CAS  Google Scholar 

  59. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095–2160

    Article  CAS  Google Scholar 

  60. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  61. Bader RWF (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  62. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  63. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  64. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545–559

    Article  Google Scholar 

  65. Muñoz-Caro C, Niño A, Sement ML, Leal JM, Ibeas S (2000) J Org Chem 65:405–410

    Article  Google Scholar 

  66. Murray JS, Politzer P (2010) Wiley Interdisciplinary Reviews. Comput Mol Sci 1:153–163

    Article  Google Scholar 

  67. Jiao H, PvR S (1994) J Chem Soc Faraday Trans 90:1559–1567

    Article  CAS  Google Scholar 

  68. White JC, Hess CA (1993) J Phys Chem 97:6398–6404

    Article  CAS  Google Scholar 

  69. Varetto U < MOLEKEL Version>; Swiss National Supercomputing Centre: Manno (Switzerland), http://wwwbioinformaticsorg/molekel/wiki/Main/HomePage

  70. Blake NP, Weakliem PC, Metiu H (1998) J Phys Chem 102:67–74

    Article  CAS  Google Scholar 

  71. Igarashi K, Tajiri K, Tanemura S, Nanbu R, Fukunaga T (1997) Z Phys D At Mol Clusters 40:562–565

    Article  CAS  Google Scholar 

  72. Wozniak K, He H, Klinowski J, Jones W, Grech E (1994) J Phys Chem 98:13755–13765

    Article  CAS  Google Scholar 

  73. Yang Q, Zhong C, Chen JF (2008) J Phys Chem C 112:1562–1569

    Article  CAS  Google Scholar 

  74. Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) J Am Chem Soc 129:3612–3620

    Article  CAS  Google Scholar 

  75. Greathouse JA, Allendorf MD (2006) J Am Chem Soc 128:10678–10679

    Article  CAS  Google Scholar 

  76. Novakovic SB, Bogdanovic GA, Fraisse B, Ghermani NE, Bouhmaida N (2007) Spasojevic-de Bire A. J Phys Chem A 111:13492–13505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was facilitated by the NSF grant EXP-LA no. 0730186. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the United States Army Engineer Research and Development Center (USAERDC). Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Michalkova Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, A.M., Petrova, T., Odbadrakh, K. et al. Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be). J Mol Model 18, 3363–3378 (2012). https://doi.org/10.1007/s00894-011-1338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1338-3

Keywords

Navigation