Skip to main content

Advertisement

Log in

Chemical reactivity analysis of deoxyribonucleosides and deoxyribonucleoside analogues (NRTIs): a first-principles density functional approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures, energetics, as well as several important chemical parameters, of antiretroviral drugs - nucleoside reverse transcriptase inhibitors (NRTIs) - and natural deoxyribonucleosides in both neutral, and positively and negatively charged states, are investigated. These studies are carried out within the frame work of first-principles density-functional theory (DFT), using the Becke-Lee-Yang-Parr (BLYP) generalized gradient corrections to the local spin density approximation exchange and correlation energy, norm-conserving pseudopotentials and a plane-wave expansion of Kohn-Sham orbitals. Conceptual DFT is used to determine global and local chemical reactivity parameters. Our results are in good agreement with the best available experiments to date. The variation in the bond lengths and bond angles on cation formation indicates that the electron is lost from the base part of these molecules. Further, the presence of the deoxyribose sugar moiety lowers their ionization potential and increases their electron affinity, in comparison to the isolated DNA base. The effectiveness of the drug action in terminating the viral DNA chain, is explained using the global reactivity parameters, by comparing the reactivities of the drug molecules with those of the competing deoxyribonucleosides. The widely followed clinical practice, of avoiding the simultaneous administration of certain drugs, is also explained from the hardness and softness parameters. For most of the drug molecules, our study validates the generally accepted wisdom, that monophosphorylation is the crucial reaction step in the phosphorylation reaction in DNA nucleotide synthesis.

Monophosphorylation of the drug molecule/corresponding deoxyribonucleoside in DNA nucleotide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Varatharajan L, Thomas SA (2009) The transport of anti-HIV drugs across blood-CNS inter- faces: summary of current knowledge and recommendations for further research. Antiviral Res 82:A99–A109

    Article  CAS  Google Scholar 

  2. Arias LM (2008) Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 134:124–146

    Article  Google Scholar 

  3. Back DJ, Burger DM, Flexner CW, Gerber JG (2005) The pharmacology of antiretroviral nucleoside and nucleotide reverse transcriptase inhibitors: implications for once-daily dosing. J Acquir Immune Defic Syndr 39(suppl 1):S1–23

    CAS  Google Scholar 

  4. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713

    Article  CAS  Google Scholar 

  5. Orlov VM, Smirnov AN, Varshavsky Ya M (1976) Ionization potentials and electron-donor ability of nucleic acids bases and their analogues. Tetrahedron Lett 48:4377–4378

    Article  Google Scholar 

  6. Hendricks JH, Lyapustina SA, de Clercq HL, Snodgrass JT, Bowen KH (1996) Dipole-bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy. J Chem Phys 104:7788–7791

    Article  CAS  Google Scholar 

  7. Close DM (2004) Calculation of the ionization potentials of the DNA bases in aqueous medium. J Phys Chem A 108:10376–10379

    Article  CAS  Google Scholar 

  8. Yu C, O’Donnell TJ, LeBteton PR (1981) Ultraviolet photoelectron studies of volatile nucleoside models. Vertical ionization potential measurements of methylated uridine, thymidine, cytidine, and adenosine. J Phys Chem 85:3851–3855

    Article  CAS  Google Scholar 

  9. Pluharova E, Jungwirth P, Bradforth SE, Slavicek P (2011) Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: from the gas phase to the aqueous environment. J Phys Chem B 115:1294–1305

    Article  CAS  Google Scholar 

  10. Richardson NA, Gu J, Wang S, Xie Y, Schaefer HF (2004) DNA nucleosides and their radical anions: molecular structures and electron affinities. J Am Chem Soc 126:4404–4411

    Article  CAS  Google Scholar 

  11. Palafox MA, Iza N, de la Fuente M, Navarro R (2009) Simulation of the first hydration shell of nucleosides D4T and thymidine: structures obtained using MP2 and DFT methods. J Phys Chem B 113:2458–2476

    Article  CAS  Google Scholar 

  12. Yekeler H (2004) Preferred conformations of some pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs). J Mol Struct (Theochem) 684:223–230

    Article  CAS  Google Scholar 

  13. Pereira BG, Vianna-Soares CD, Righi A, Pinheiro MVB, Flores MZS, Bezerra EM, Freire VN, Lemos V, Caetano EWS, Cavada BS (2007) Identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations. J Pharma Biomed Anal 43:1885–1889

    Article  CAS  Google Scholar 

  14. Fidanza NG, Suvire FD, Sosa GL, Lobayan RM, Enriz RD, Peruchena NM (2001) A search for C-H…O type hydrogen bonds in Lamivudine (3TC). An exploratory conformational and electronic analysis. J Mol Struct(Theochem) 543:185–193

    Article  CAS  Google Scholar 

  15. Fidanza NG, Sosa GL, Lobayan RM, Peruchena NM (2005) Topological analysis of the electronic charge density in nucleoside analogues derivatives of the AZT. Effects of XH/O and XH/F intramolecular H-bonds. J Mol Struct(Theochem) 722:65–78

    Article  CAS  Google Scholar 

  16. Carvalho ATP, Fernandes PA, Ramos MJ (2007) The excision mechanism in reverse transcriptase: pyrophosphate leaving and fingers opening are uncoupled events with the analogues AZT and d4T. J Phys Chem B 111:12032–12039

    Article  CAS  Google Scholar 

  17. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  18. Parr RG, Yang WT (1995) Density functional theory of electronic structure of the molecules. Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  19. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  20. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  21. Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10:3028–3042

    Article  CAS  Google Scholar 

  22. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  23. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154, and ref. cited therein

    Article  CAS  Google Scholar 

  24. Mulliken RS (1934) A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  25. Mulliken RS (1935) Electronic Structure of the Molecules XI. Electroaffinity, Molecular Orbitals and Moments. J Chem Phys 3:573–585

    CAS  Google Scholar 

  26. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  27. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Nati Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  28. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Nati Acad Sci USA 82:6723–6726

    Article  CAS  Google Scholar 

  29. Parr RG, Lv S, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  30. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  31. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous Electron Gas. Phys Rev 136:3864–3871

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  34. Ayers P W, Yang W (2003) ”Density functional theory”, in computational medicinal chemistry for drug discovery. Bultinck P, De Winter H, Langenaeker W, Tollenaere J, (Eds) Dekker, New York, pp 571

  35. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  36. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  37. Ramaniah LM, Bernasconi M, Parrinello M (1998) Density-functional study of hydration of sodium in water clusters. J Chem Phys 109:6839–6843

    Article  CAS  Google Scholar 

  38. Ramaniah LM, Bernasconi M, Parrinello M (1999) Ab initio molecular-dynamics simulation of K+ solvation in water. J Chem Phys 111: 587–1591

    Google Scholar 

  39. Ramaniah LM, Boero M, Laghate M (2004) Tantalum-fullerene clusters: a first-principles study of static properties and dynamical behavior. Phys Rev B 70:o35411–o35424

    Article  Google Scholar 

  40. Ramaniah LM, Boero N (2006) Structural, electronic, and optical properties of the diindenoperylene molecule from firstprinciples density-functional theory. Phys Rev A 74:o42505–o42509

    Article  Google Scholar 

  41. Ramaniah LM, Chakrabarti A, Kshirsagar RJ, Kamal C, Banerjee A (2011) Density functional study of α-amino acids: structural, energetic and vibrational properties. Molecular Physics 109:875–892

    Article  CAS  Google Scholar 

  42. Barnett RN, Landman U (1993) Born-Oppenheimer molecular-dynamics simulations of finite systems: and dynamics of (H2O)2. Phys Rev B 48:2081–2097

    Article  CAS  Google Scholar 

  43. Tuckerman ME, Martyna GJ (2005) Efficient Evaluation of Nonlocal Pseudopotentials via Euler Exponential Spline Interpolation. Chem Phys Chem 6:1827–1835

    Article  Google Scholar 

  44. Tuckerman ME, Martyna GJ (2002) A new reciprocal space based treatment of long range interactions on surfaces. J Chem Phys 116:5351–5362

    Article  Google Scholar 

  45. Hutter J, Luthi Al P, Parrinello M (1993) Electronic structure optimization in plane-wave-based density functional calculations by direct inversion in the iterative subspace. Comput Mater Sci 2:244–248

    Article  Google Scholar 

  46. Car R, Parrinello M (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  47. CPMD, Copyright IBM Corp.1990-2004,Copyright Max-Planck-Institut für Festkörperforschung, Stuttgart, 1997 - 2001.

  48. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  50. Harte WE, Starrett JE, Martin JC, Mansuri MM (1991) Structural studies of the anti-HIV agent 2′, 3′-didehydro-2′, 3′-dideoxythymidine (D4T). Biochem Biophys Res Commun 175:298–304

    Article  CAS  Google Scholar 

  51. Birnbaum GI, Lin TS, Prusoff WH (1988) Unusual structural features of 2′, 3′-Dideoxycytidine, an inhibitor of the HIV (AIDS) virus. Biochem Biophys Res Commun 151:608–614

    Article  CAS  Google Scholar 

  52. Dyer I, Low JN, Tollin P, Wilson HR, Howie RA (1988) Structure of 3′-Azido-3′- deoxythymidine, AZT. Acta Cryst C 44:767–769

    Article  Google Scholar 

  53. Birnbaum GI, Giziewicz J, Gabe EJ, Lin TS, Prusoff WH (1987) Structure and conformation of 3′-azido-3′ -deoxythymidine (AZT), an inhibitor of the HIV (AIDS) virus. Can J Chem 65:2135–3139

    Article  CAS  Google Scholar 

  54. Sato T (1984) Structure of 2′-deoxyadenosine, C10H13N5O3. Acta Cryst C 40:880–882

    Article  Google Scholar 

  55. Young DW, Wilson HR (1975) The crystal and molecular structure of 2′-deoxycytidine. Acta Cryst B 31:961–965

    Article  Google Scholar 

  56. Young DW, Tollin P, Wilson HR (1969) The crystal and molecular structure of thymidine. Acta Cryst B 25:1423–1432

    Article  CAS  Google Scholar 

  57. Candeias LP, Steenken S (1992) Ionization of purine nucleosides and nucleotides and their components by 193-nm laser photolysis in aqueous solution: model studies for oxidative damage of DNA. J Am Chem Soc 114:699–704

    Article  CAS  Google Scholar 

  58. Slavicek P, Winter B, Faubel M, Bradforth SE, Jungwirth P (2009) Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J Am Chem Soc 131:6460–6467

    Article  CAS  Google Scholar 

  59. Kumar V, Jain G, Kishor S, Ramaniah LM (2011) Chemical reactivity analysis of some alkylating drug molecules: a density functional theory approach. Comput Theoret Chem 968:18–25

    Article  CAS  Google Scholar 

  60. Kishor S, Dhayal SS, Mathur M, Ramaniah LM (2008) Structural and energetic properties of α-amino acids: a first principles density functional study. Mol Phys 106:2289–2300

    Article  CAS  Google Scholar 

  61. Compton R N (1997) Atomic negative ions, In: Esaulov D (Ed.) Negative ions, Cambridge Press, and references therein

  62. Chen ECM, Chen ESD, Wentworth WE (1990) The role of electron donors and acceptors in base stacking in DNA and RNA. Biochem Biophys Res Commu 171:97–101

    Article  CAS  Google Scholar 

  63. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  64. Ohno M, Zakrzewski VG, Ortiz JV, Niessen WV (1997) Theoretical study of the valence ionization energies and electron affinities of linear C2n + 1(n = 1–6) clusters. J Chem Phys 106:3258–3269

    Article  CAS  Google Scholar 

  65. Cioslowski J, Piskorz P, Liu G (1997) Ionization potentials and electron affinities from the extended Koopmans’ theorem applied to energy-derivative density matrices: the EKTMPn and EKTQCISD methods. J Chem Phys 107:6804–6811

    Article  CAS  Google Scholar 

  66. Ortiz JV (1998) Electron detachment energies of closed-shell anions calculated with a renormalized electron propagator. Chem phys Lett 296:494–498

    Article  CAS  Google Scholar 

  67. Chen ES, Chen ECM, Sane N, Talley L, Kozanecki N, Shulze S (1999) Classification of organic molecules to obtain electron affinities from half wave reduction potentials: the aromatic hydrocarbons. Chem Phys 110:9319–9329

    CAS  Google Scholar 

  68. Simons J, Jordan KD (1987) Ab initio electronic structure of anions. Chem Rev 87:535–555

    Article  CAS  Google Scholar 

  69. Li X, Cai Z, Sevilla MD (2002) DFT calculations of the electron affinities of nucleic acid bases: dealing with negative electron affinities. J Phys Chem 106:1596–1603

    Article  CAS  Google Scholar 

  70. Silverton QFR, Haugwitz RD, Todaro LJ (1988) Structures of two dideoxynueleosides: 2′, 3′-dideoxyadenosine and 2′, 3′-dideoxyeytidine. Acta Cryst C 44:321–324

    Article  Google Scholar 

  71. Crespo-Hernandez CE, Close DM, Gorb L, Leszczynski J (2007) Determination of redox potentials for the Watson-Crick base pairs, DNA nucleosides, and relevant nucleoside analogues. J Phys Chem B 111:5386–5395

    Article  CAS  Google Scholar 

  72. Goldschmidt RH, Dong BJ (2002) Treatment of AIDS and HIV-related conditions 2002: antiretroviral therapy. JAm Board Med Family (Antiretroviral Therapy) 15:319–331

    Google Scholar 

  73. Guckian KM, Schweitzer BA, Ren RX, Sheils CJ, Tahmassebi DC, Kool ET (2000) Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J Am Chem Soc 122:2213–2222.

    Google Scholar 

  74. Cihlar T, Ray AS (2010) Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after Zidovudine. Antiviral Res 85:39–58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DAE-BRNS grant (sanction no. 2010/37C/58/BRNS) and was possible due to the facilities, and help from the staff, of the BARC-Mumbai and IUAC-New Delhi computer centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2556 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Kishor, S. & Ramaniah, L.M. Chemical reactivity analysis of deoxyribonucleosides and deoxyribonucleoside analogues (NRTIs): a first-principles density functional approach. J Mol Model 18, 3969–3980 (2012). https://doi.org/10.1007/s00894-012-1391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1391-6

Keywords

Navigation