Skip to main content
Log in

Nature of halogen bonding. A study based on the topological analysis of the Laplacian of the electron charge density and an energy decomposition analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work we investigate the nature of the Cl···N interactions in complexes formed between substituted ammonium [NHn(X3-n) (with n = 0, 1, 2, 3 and X = −CH3, −F] as Lewis bases and F−Cl molecule as Lewis acid. They have been chosen as a study case due to the wide range of variation of their binding energies, BEs. Møller-Plesset [MP2/6-311++G(2d,2p)] calculations show that the BEs for this set of complexes lie in the range from 1.27 kcal/mol (in F−Cl···NF3) to 27.62 kcal/mol [in F−Cl···N(CH3)3]. The intermolecular distribution of the electronic charge density and their L(r) = −¼∇2ρ(r) function have been investigated within the framework of the atoms in molecules (AIM) theory. The intermolecular interaction energy decomposition has also been analyzed using the reduced variational space (RVS) method. The topological analysis of the L(r) function reveals that the local topological properties measured at the (3,+1) critical point [in L(r) topology] are good descriptors of the strength of the halogen bonding interactions. The results obtained from energy decomposition analysis indicate that electrostatic interactions play a key role in these halogen bonding interactions. These results allow us to establish that, when the halogen atom is bonded to a group with high electron-withdrawing capacity, the electrostatic interaction between the electron cloud of the Lewis base and the halogen atom unprotected nucleus of the Lewis acid produces the formation and determines the geometry of the halogen bonded complexes. In addition, a good linear relationship has been established between: the natural logarithm of the BEs and the electrostatic interaction energy between electron charge distribution of N atom and nucleus of Cl atom, denoted as V e-n(N,Cl) within the AIM theory.

Interaction energy components for FCl···NH3 complex in function of the chlorinenitrogen separation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  2. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  3. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  4. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  5. Tomura M (2009) Chem Phys 359:126–131

    Article  CAS  Google Scholar 

  6. Stevens WJ, Fink WH (1987) Chem Phys Lett 139:15–22

    Article  CAS  Google Scholar 

  7. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  8. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  9. Alkorta I, Blanco F, Elguero J (2009) Struct Chem 20:63–71

    Article  CAS  Google Scholar 

  10. Glendening ED (2005) J Phys Chem A 109:11936

    Article  CAS  Google Scholar 

  11. Li Q, Yuan H, Jing B, Liu Z, Li W, Cheng J, Gong B, Sun J (2010) THEOCHEM 942:145–148

    Article  CAS  Google Scholar 

  12. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

  13. Popelier P (2000) Atoms in molecules, an introduction. Prentice-Hall, Manchester

    Google Scholar 

  14. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  15. Lu Y-X, Zou J-W, Wand Y-H, Yu Q-S, Jiang Y-J, Zhao W-N (2007) Chem Phys Lett 449:6–10

    Article  CAS  Google Scholar 

  16. Eskandari K, Zariny H (2010) Chem Phys Lett 492:9–13

    Article  CAS  Google Scholar 

  17. Lu Y-X, Zou J-W, Wand Y-H, Yu Q-S (2006) THEOCHEM 767:139–142

    Article  CAS  Google Scholar 

  18. Lu Y-X, Zou J-W, Wand Y-H, Yu Q-SJ (2006) THEOCHEM 776:83–87

    Article  CAS  Google Scholar 

  19. Blanco F, Alcorta I, Solimannejad M, Elguero J (2009) J Phys Chem A 113:3237–3244

    Article  CAS  Google Scholar 

  20. Xu L, Zou J-W, Lu Y-L, Yu Q-S, Zhang N (2009) THEOCHEM 897:12–16

    Article  CAS  Google Scholar 

  21. Xu L, Zou J-W, Wang Y-H, Yu Q-S (2007) Int J Quant Chem 107:1479–1486

    Article  Google Scholar 

  22. Lu Y-X, Zou J-W, Wang Y-H, Yu Q-S (2007) Chem Phys 334:1–7

    Article  CAS  Google Scholar 

  23. Zhang X, Zeng Y, Li X, Meng L, Zheng S (2011) Struct Chem 22:567–576

    Article  CAS  Google Scholar 

  24. Duarte DJR, Vallejos MM, Peruchena NM (2010) J Mol Model 16:737–748

    Article  CAS  Google Scholar 

  25. Boys SF, Bernardi F (1970) Mol Phys 19:553–559

    Article  CAS  Google Scholar 

  26. Su P, Li H (2009) J Chem Phys 131:014102–014102

    Article  Google Scholar 

  27. Blieger-König F, Schönbohn J (2000) AIM2000 Program package, version 2.0 Copyright 2002, chemical adviser by Bader RFW. Büro fur Innovative Software Strieibel Blieger-König, Germany

    Google Scholar 

  28. AIMAll (Version 11.12.19), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2011 (aim.tkgristmill.com)

  29. Frisch MJ et al. (2003) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  30. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  31. Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E (2009) Angew Chem Int Ed 48:3838–3841

    Article  CAS  Google Scholar 

  32. Martinez Amezaga NJ, Pamies SC, Peruchena NM, Sosa GL (2010) J Phys Chem A 114:552–562

    Article  CAS  Google Scholar 

  33. Bader RFW, Essén H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  34. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  35. Popelier PLA (2000) Coord Chem Rev 197:169–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge SECYT-UNNE (Secretaría de Ciencia y Tecnología – Universidad Nacional del Nordeste), Grant PICTO (Proyecto de Investigación Científica y Tecnológica Orientado) 089 and PIP CONICET (Proyecto de Investigación Plurianual–Consejo Nacional de Investigaciones Científicas y Técnicas) 095, for financial support. Darío Jorge Roberto Duarte is fellows of CONICET UNNE and Nélida Maria Peruhena is a career researcher of CONICET, Argentine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nélida M. Peruchena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, D.J.R., Sosa, G.L. & Peruchena, N.M. Nature of halogen bonding. A study based on the topological analysis of the Laplacian of the electron charge density and an energy decomposition analysis. J Mol Model 19, 2035–2041 (2013). https://doi.org/10.1007/s00894-012-1624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1624-8

Keywords

Navigation