Skip to main content
Log in

Theoretical study on the structures and properties of mixtures of urea and choline chloride

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we investigated in detail the structural characteristics of mixtures of choline chloride and urea with different urea contents by performing molecular dynamic (MD) simulations, and offer possible explanations for the low melting point of the eutectic mixture of choline chloride and urea with a ratio of 1:2. The insertion of urea molecules was found to change the density distribution of cations and anions around the given cations significantly, disrupting the long-range ordered structure of choline chloride. Moreover, with increasing urea concentration, the hydrogen bond interactions between choline cations and Cl anions decreased, while those among urea molecules obviously increased. From the hydrogen bond lifetimes, it was found that a ratio of 1:2 between choline chloride and urea is necessary for a reasonable strength of hydrogen bond interaction to maintain the low melting point of the mixture of choline chloride with urea. In addition, it was also deduced from the interaction energies that a urea content of 67.7 % may make the interactions of cation–anion, cation–urea and anion–urea modest, and thus results in the lower melting point of the eutectic mixture of choline chloride and urea. The present results may offer assistance to some extent for understanding the physicochemical properties of the eutectic mixture of choline chloride and urea, and give valuable information for the further development and application of deep eutectic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Endres F, Abedin SZE (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  2. Wishart JF, Castner EW Jr (2007) The physical chemistry of ionic liquids. J Phys Chem B 111:4639–4640

    Article  CAS  Google Scholar 

  3. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  4. Wasserscheid P, Welton T (eds) (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  5. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  6. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  7. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  8. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  9. Bourbigou HO, Magna L (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A 182–183:419–437

    Google Scholar 

  10. Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798

    Article  CAS  Google Scholar 

  11. Nockemann P, Thijs B, Driesen K, Janssen CR, Hecke KV, Meervelt LV, Kossmann S, Kirchner B, Binnemans K (2007) Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. J Phys Chem B 111:5254–5263

    Article  CAS  Google Scholar 

  12. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    Article  CAS  Google Scholar 

  13. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–71

  14. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  15. Kareem MA, Mjalli FS, Hashim MA, AlNashef IM (2010) Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data 55:4632–4637

    Article  CAS  Google Scholar 

  16. Abbott AP, Capper G, Gray S (2006) Design of improved deep eutectic solvents using hole theory. ChemPhysChem 7:803–806

    Article  CAS  Google Scholar 

  17. Zhao C, Burrell G, Torriero AAJ, Separovic F, Dunlop NF, MacFarlane DR, Bond AM (2008) Electrochemistry of room temperature protic ionic liquids. J Phys Chem B 112:6923–6936

    Article  CAS  Google Scholar 

  18. Nkuku CA, LeSuer RJ (2007) Electrochemistry in deep eutectic solvents. J Phys Chem B 111:13271–13277

    Article  CAS  Google Scholar 

  19. Gorke, JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 1235–1237

  20. Lindberg D, Revenga MDLF, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed. J Biotechnol 147:169–171

    Article  CAS  Google Scholar 

  21. María PDD, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15:220–225

    Article  Google Scholar 

  22. Zhang J, Wu T, Chen S, Feng PY, Bu XH (2009) Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew Chem Int Ed 48:3486–3490

    Article  CAS  Google Scholar 

  23. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  24. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  25. Lopes JNC, Deschamaps J, Pádua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:2038–2047

    Article  CAS  Google Scholar 

  26. Lopes JNC, Deschamaps J, Pádua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. (Addition/Correction). J Phys Chem B 108:11250

    Article  CAS  Google Scholar 

  27. Lopes JNC, Pádua AAH (2004) Molecular force field for ionic liquids composed of triflate or bistriflylimide. J Phys Chem B 108:16893–16898

    Article  CAS  Google Scholar 

  28. Lopes JNC, Pádua AAH (2006) Using spectroscopic data on imidazolium cation conformations to test a molecular force field for ionic liquids. J Phys Chem B 110:7485–7489

    Article  CAS  Google Scholar 

  29. Lopes JNC, Pádua AAH (2006) Molecular force field for ionic liquids III: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J Phys Chem B 110:19586–19592

    Article  Google Scholar 

  30. Rowley RL (1994) Statistical mechanics for thermophysical property calculations. Prentice-Hall, New York

    Google Scholar 

  31. Duffy EM, Severance DL, Jorgensen WL (1993) Urea: potential functions, log P, and free energy of hydration. Isr J Chem 33:323

    CAS  Google Scholar 

  32. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  34. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  35. Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  36. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  37. Keblinski P, Eggebrecht J, Wolf D, Phillpot SR (2000) Molecular dynamics study of screening in ionic fluids. J Chem Phys 113:282–291

    Article  CAS  Google Scholar 

  38. Hanke CG, Lynden-Bell RM (2003) A simulation study of water-dialkylimidazolium ionic liquid mixtures. J Phys Chem B 107:10873–10878

    Article  CAS  Google Scholar 

  39. Wu X, Liu Z, Huang S, Wang W (2005) Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys Chem Chem Phys 7:2771–2779

    Article  CAS  Google Scholar 

  40. Jiang W, Wang Y, Voth GA (2007) Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J Phys Chem B 111:4812–4818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundations of China (Grants No. 21103168) and the “Hundreds Talents Program” of the Chinese Academy of Sciences for provision of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 856 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Li, Y., Wu, X. et al. Theoretical study on the structures and properties of mixtures of urea and choline chloride. J Mol Model 19, 2433–2441 (2013). https://doi.org/10.1007/s00894-013-1791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1791-2

Keywords

Navigation