Skip to main content
Log in

The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young’s moduli, elastic stiffness constants, and Poisson’s ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pascault J-P, Williams RJJ (2010) General Concepts about Epoxy Polymers. In: Pascault J-P, Williams RJJ (eds) Epoxy polymers. Wiley-VCH, Weinheim, pp 1–12. doi:10.1002/9783527628704ch1

  2. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33(2):191–269. doi:10.1016/j.progpolymsci.2007.09.002

    Article  CAS  Google Scholar 

  3. Doherty DC, Holmes BN, Leung P, Ross RB (1998) Polymerization molecular dynamics simulations. I. Cross-linked atomistic models for poly (methacrylate) networks. Comput Theor Polym Sci 8(1–2):169–178

    Article  CAS  Google Scholar 

  4. Tsige M, Stevens MJ (2004) Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromol 37(2):630–637

    Article  CAS  Google Scholar 

  5. Komarov PV, Yu-Tsung C, Shih-Ming C, Khalatur PG, Reineker P (2007) Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromol 40(22):8104–8113

    Article  CAS  Google Scholar 

  6. Bermejo JS, Ugarte CM (2009) Chemical crosslinking of PVA and prediction of material properties by means of fully atomistic MD simulations. Macromol Theory Simul 18(4–5):259–267

    Article  CAS  Google Scholar 

  7. Bermejo JS, Ugarte CM (2009) Influence of cross–linking density on the glass transition and structure of chemically cross–linked PVA: a molecular dynamics study. Macromol Theory Simul 18(6):317–327

    Article  CAS  Google Scholar 

  8. Hölck O, Dermitzaki E, Wunderle B, Bauer J, Michel B (2011) Basic thermo-mechanical property estimation of a 3D-crosslinked epoxy/SiO2 interface using molecular modelling. Microelectron Reliab 51(6):1027–1034. doi:10.1016/j.microrel.2011.03.014

    Article  Google Scholar 

  9. Tack JL, Ford DM (2008) Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics. J Mol Graphics Modell 26(8):1269–1275

    Article  CAS  Google Scholar 

  10. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromol 41(18):6837–6842

    Article  CAS  Google Scholar 

  11. Li C, Strachan A (2010) Molecular simulations of crosslinking process of thermosetting polymers. Polymer 51(25):6058–6070

    Article  CAS  Google Scholar 

  12. Nouri N, Ziaei-Rad S (2011) A molecular dynamics investigation on mechanical properties of cross-linked polymer networks. Macromol 44(13):5481–5489. doi:10.1021/ma2005519

    Article  CAS  Google Scholar 

  13. Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11):2445–2452. doi:10.1016/j.polymer.2011.03.052

    Article  CAS  Google Scholar 

  14. Fan HB, Yuen MMF (2007) Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48(7):2174–2178

    Article  CAS  Google Scholar 

  15. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3):945–952

    Article  CAS  Google Scholar 

  16. Choi J, Yu S, Yang S, Cho M (2011) The glass transition and thermoelastic behavior of epoxy-based nanocomposites: a molecular dynamics study. Polymer 52(22):5197–5203. doi:10.1016/j.polymer.2011.09.019

    Article  CAS  Google Scholar 

  17. Yu S, Yang S, Cho M (2011) Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity. J Appl Phys 110(12):124302–124309

    Article  Google Scholar 

  18. Wu C, Xu W (2006) Atomistic molecular modelling of crosslinked epoxy resin. Polymer 47(16):6004–6009

    Article  CAS  Google Scholar 

  19. Wu C, Xu W (2007) Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin. Polymer 48(18):5440–5448

    Article  CAS  Google Scholar 

  20. Wu C, Xu W (2007) Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 48(19):5802–5812

    Article  CAS  Google Scholar 

  21. Hörstermann H, Hentschke R, Amkreutz M, Hoffmann M, Wirts-Rütters M (2010) Predicting water sorption and volume swelling in dense polymer systems via computer simulation. J Phys Chem B 114(51):17013–17024

    Article  Google Scholar 

  22. Lin PH, Khare R (2009) Molecular simulation of cross-linked epoxy and epoxy − POSS nanocomposite. Macromol 42(12):4319–4327

    Article  CAS  Google Scholar 

  23. Clancy T, Frankland S, Hinkley J, Gates T (2009) Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress. Polymer 50(12):2736–2742

    Article  CAS  Google Scholar 

  24. Prasad A, Grover T, Basu S (2010) Coarse–grained molecular dynamics simulation of cross–linking of DGEBA epoxy resin and estimation of the adhesive strength. Int J Eng Sci Technol 2(4):17–30

    Google Scholar 

  25. Liu H, Li M, Lu Z-Y, Zhang Z-G, Sun C-C, Cui T (2011) Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system. Macromol 44(21):8650–8660. doi:10.1021/ma201390k

    Article  CAS  Google Scholar 

  26. Chang S-H, Kim H-S (2011) Investigation of hygroscopic properties in electronic packages using molecular dynamics simulation. Polymer 52(15):3437–3442. doi:10.1016/j.polymer.2011.05.056

    Article  CAS  Google Scholar 

  27. Soni NJ, Lin P-H, Khare R (2012) Effect of cross-linker length on the thermal and volumetric properties of cross-linked epoxy networks: a molecular simulation study. Polymer 53(4):1015–1019. doi:10.1016/j.polymer.2011.12.051

    Article  CAS  Google Scholar 

  28. Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31(3):225–236

    Article  CAS  Google Scholar 

  29. Zhu R, Pan E, Roy A (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng, A 447(1):51–57

    Google Scholar 

  30. Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos Part B: Eng 43(8):3491–3496. doi:10.1016/j.compositesb.2011.12.008

    Article  CAS  Google Scholar 

  31. Deazle A, Hamerton I, Heald C, Howlin B (1996) Molecular modelling of high performance polymers. Polym Int 41(2):151–157

    Article  CAS  Google Scholar 

  32. Yarovsky I, Evans E (2002) Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3):963–969

    Article  CAS  Google Scholar 

  33. Wunderle B, Dermitzaki E, Hölck O, Bauer J, Walter H, Shaik Q, Rätzke K, Faupel F, Michel B, Reichl H (2010) Molecular dynamics approach to structure–property correlation in epoxy resins for thermo-mechanical lifetime modeling. Microelectron Reliab 50(7):900–909

    Article  CAS  Google Scholar 

  34. Abbott LJ, Colina CM (2011) Atomistic structure generation and gas adsorption simulations of microporous polymer networks. Macromol 44(11):4511–4519. doi:10.1021/ma200303p

    Article  CAS  Google Scholar 

  35. Li Y, Kröger M, Liu WK (2011) Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer 52(25):5867–5878. doi:10.1016/j.polymer.2011.10.044

    Article  CAS  Google Scholar 

  36. Song X, Sun Y, Wu X, Zeng F (2011) Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS). Comput Mater Sci 50(12):3282–3289. doi:10.1016/j.commatsci.2011.06.009

    Article  CAS  Google Scholar 

  37. Kessler M, Sottos N, White S (2003) Self-healing structural composite materials. Compos Part A: Appl Sci Manuf 34(8):743–753

    Article  Google Scholar 

  38. Brown E, White S, Sottos N (2006) Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci 41(19):6266–6273

    Article  CAS  Google Scholar 

  39. Blaiszik B, Sottos N, White S (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68(3):978–986

    Article  CAS  Google Scholar 

  40. Yuan YC, Rong MZ, Zhang MQ, Chen J, Yang GC, Li XM (2008) Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromol 41(14):5197–5202

    Article  CAS  Google Scholar 

  41. Liu X, Sheng X, Lee JK, Kessler MR, Kim JS (2009) Rheokinetic evaluation of self-healing agents polymerized by Grubbs catalyst embedded in various thermosetting systems. Compos Sci Technol 69(13):2102–2107

    Article  CAS  Google Scholar 

  42. Jin H, Mangun CL, Stradley DS, Moore JS, Sottos NR, White SR (2012) Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53(2):581–587. doi:10.1016/j.polymer.2011.12.005

    Article  CAS  Google Scholar 

  43. Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polymer 53(2):370–378. doi:10.1016/j.polymer.2011.12.020

    Article  CAS  Google Scholar 

  44. http://accelrys.com/products/materials-studio/ Accelrys Inc., San Diego.

  45. Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  46. Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8(1–2):229–246

    Google Scholar 

  47. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104(11):2477–2489

    Article  CAS  Google Scholar 

  48. Yang J, Ren Y, Tian A, Sun H (2000) COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases. J Phys Chem B 104(20):4951–4957

    Article  CAS  Google Scholar 

  49. McQuaid MJ, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25(1):61–71

    Article  CAS  Google Scholar 

  50. Rigby D (2004) Fluid density predictions using the COMPASS force field. Fluid Phase Equilib 217(1):77–87

    Article  CAS  Google Scholar 

  51. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369(3):253–287

    Article  Google Scholar 

  52. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  53. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268. doi:10.1080/00268978400101201

    Article  Google Scholar 

  54. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  55. Shell Chemical Co (1989). EPON resin structural reference manual. Shell Chemical Co, Houston

  56. Garcia FG, Soares BG, Pita VJ, Sánchez R, Rieumont J (2007) Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J Appl Polym Sci 106(3):2047–2055

    Article  CAS  Google Scholar 

  57. Theodorou DN, Suter UW (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromol 19(1):139–154

    Article  CAS  Google Scholar 

  58. Brown D, Clarke JHR (1991) Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology. Macromolecules 24(8):2075–2082

    Article  CAS  Google Scholar 

  59. Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76:2662

    Article  CAS  Google Scholar 

  60. Ray JR (1988) Elastic constants and statistical ensembles in molecular dynamics. Comput Phys Rep 8(3):109–151. doi:10.1016/0167-7977(88)90009-3

    Article  CAS  Google Scholar 

  61. Gusev AA, Zehnder MM, Suter UW (1996) Fluctuation formula for elastic constants. Phys Rev B 54:1–4

    Article  CAS  Google Scholar 

  62. Raaska T, Niemela S, Sundholm F (1994) Atom-based modeling of elastic constants in amorphous polystyrene. Macromolecules 27(20):5751–5757

    Article  CAS  Google Scholar 

  63. Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, Burlington

    Google Scholar 

  64. Possart G, Presser M, Passlack S, Geifl P, Kopnarski M, Brodyanski A, Steinmann P (2009) Micro–macro characterisation of DGEBA-based epoxies as a preliminary to polymer interphase modelling. Int J Adhes Adhes 29(5):478–487

    Article  CAS  Google Scholar 

  65. Yang S, Qu J (2012) Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer 53(21):4806–4817

    Article  CAS  Google Scholar 

  66. Liu J, Liu Z, Yuan S, Liu J (2013) Synthesis, crystal structures, and spectral characterization of tetranuclear Mn(II) complex with a new Schiff base ligand and molecular dynamics studies on inhibition properties of such Schiff base. J Mol Struct 1037:191–199

    Article  CAS  Google Scholar 

  67. Zeng JP, Zhang JY, Gong XD (2011) Molecular dynamics simulation of interaction between benzotriazoles and cuprous oxide crystal. Comput Theor Chem 963:110–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Arab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokuhfar, A., Arab, B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model 19, 3719–3731 (2013). https://doi.org/10.1007/s00894-013-1906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1906-9

Keywords

Navigation