Skip to main content
Log in

A study of the solvent effect on the morphology of RDX crystal by molecular modeling method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to investigate the effect of acetone solvent on the crystal morphology of RDX. The results show that the growth morphology of RDX crystal in vacuum is dominated by the (111), (020), (200), (002), and (210) faces using the BFDH laws, and (111) face is morphologically the most important. The analysis of surface structures of RDX crystal indicates that (020) face is non-polar, while (210), (111), (002), and (200) faces are polar among which (210) face has the strongest polarity. The interaction between acetone solvent and each RDX crystal face is different, and the order of binding energy on these surfaces is (210) > (111) > (002) > (200) > (020). The analysis of interactions among RDX and acetone molecules reveal that the system nonbond interactions are primary strong van der Waals and electrostatic interactions containing π-hole interactions, the weak hydrogen bond interactions are also existent. The effect of acetone on the growth of RDX crystal can be evaluated by comparing the binding energies of RDX crystalline faces. It can be predicted that compared to that in vacuum, in the process of RDX crystallization from acetone, the morphological importance of (210) face is increased more and (111) face is not the most important among RDX polar surfaces, while the non-polar (020) face probably disappears. The experimentally obtained RDX morphology grown from acetone is in agreement with the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rogers J, Wright S, Lee P (1962) Physical and chemical properties of RDX and HMX. Holston Army Ammunition Plant

  2. McCrone W (1950) Crystallographic data. 32. RDX (cyclotrimethylenetrinitramine). Anal Chem 22(7):954–955

    Article  CAS  Google Scholar 

  3. Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B Struct Crystallogr Cryst Chem 28(9):2857–2862

    Article  CAS  Google Scholar 

  4. Doherty RM, Watt DS (2008) Relationship between RDX properties and sensitivity. Propellants Explos Pyrotech 33(1):4–13. doi:10.1002/prep.200800201

    Article  CAS  Google Scholar 

  5. Van der Heijden A, Ter Horst J, Kendrick J, Kim KJ, Krober H, Simon F (2005) Crysatllization. In: Teipel U (ed) Energetic materials. Wiley, Weinheim, pp 53–157

    Chapter  Google Scholar 

  6. van der Heijden AE, Creyghton YL, Marino E, Bouma RH, Scholtes GJ, Duvalois W, Roelands MC (2008) Energetic materials: crystallization, characterization and insensitive plastic bonded explosives. Propellants Explos Pyrotech 33(1):25–32

    Article  Google Scholar 

  7. Spyckerelle C, Eck G, Sjöberg P, Amnéus AM (2008) Reduced sensitivity RDX obtained from Bachmann RDX. Propellants Explos Pyrotech 33(1):14–19

    Article  CAS  Google Scholar 

  8. Roberts CW, Hira SM, Mason BP, Strouse GF, Stoltz CA (2011) Controlling RDX explosive crystallite morphology and inclusion content via simple ultrasonic agitation and solvent evaporation. CrystEngComm 13(4):1074–1076

    Article  CAS  Google Scholar 

  9. Stoltz C, Mason BP, Roberts C, Hira S, Strouse G (2012) Sonocrystallization as a tool for controlling crystalline explosivemorphology and inclusion content. In: AIP Conference Proceedings, p 641

  10. Lu JJ, Ulrich J (2005) The influence of supersaturation on crystal morphology–experimental and theoretical study. Cryst Res Technol 40(9):839–846

    Article  CAS  Google Scholar 

  11. Ma M, Ye W, Wang X-X (2008) Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Mater Lett 62(23):3875–3877

    Article  CAS  Google Scholar 

  12. Lahav M, Leiserowitz L (2001) The effect of solvent on crystal growth and morphology. Chem Eng Sci 56(7):2245–2253

    Article  CAS  Google Scholar 

  13. Bhat MN, Dharmaprakash S (2002) Effect of solvents on the growth morphology and physical characteristics of nonlinear optical γ-glycine crystals. J Cryst Growth 242(1):245–252

    Article  CAS  Google Scholar 

  14. Siegfried MJ, Choi K-S (2006) Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J Am Chem Soc 128(32):10356–10357

    Article  CAS  Google Scholar 

  15. Thompson C, Davies MC, Roberts CJ, Tendler SJ, Wilkinson MJ (2004) The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. Int J Phar 280(1):137–150

    Article  CAS  Google Scholar 

  16. Ter Horst J, Geertman R, Van der Heijden A, Van Rosmalen G (1999) The influence of a solvent on the crystal morphology of RDX. J Cryst Growth 198:773–779

    Article  Google Scholar 

  17. Ter Horst J, Geertman R, Van Rosmalen G (2001) The effect of solvent on crystal morphology. J Cryst Growth 230(1):277–284

    Article  Google Scholar 

  18. van der Heijden A, Bouma RH (2004) Crystallization and characterization of RDX, HMX, and CL-20. Cryst Growth Des 4(5):999–1007

    Article  Google Scholar 

  19. Myerson AS, Jang SM (1995) A comparison of binding energy and metastable zone width for adipic acid with various additives. J Cryst Growth 156(4):459–466

    Article  CAS  Google Scholar 

  20. Schmidt C, Yürüdü C, Wachsmuth A, Ulrich J (2011) Modeling the morphology of benzoic acid crystals grown from aqueous solution. CrystEngComm 13(4):1159–1169

    Article  CAS  Google Scholar 

  21. Duan X, Wei C, Liu Y, Pei C (2010) A molecular dynamics simulation of solvent effects on the crystal morphology of HMX. J Hazard Mater 174(1):175–180

    Article  CAS  Google Scholar 

  22. Halfpenny P, Roberts K, Sherwood J (1984) Dislocations in energetic materials: IV. The crystal growth and perfection of cyclotrimethylene trinitramine (RDX). J Cryst Growth 69(1):73–81

    Article  CAS  Google Scholar 

  23. Bravais A, de Beaumont LÉ (1866) Etudes cristallographiques: Mémoire sur les systèmes formés par des points distribués régulièrement sur un plan ou dans l’espace. Gauthiers-Villars

  24. Friedel M (1907) Etudes sur la loi de Bravais. Bull Soc Fr Mineral 30:326–455

    Google Scholar 

  25. Donnay J, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Mineral 22(5):446–467

    CAS  Google Scholar 

  26. Materials Studio 4.0 (2007) Discover/Accelrys, San Diego, CA

  27. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  29. Bulat FA, Toro-Labble A (unpublished) WFA: a suite of programs to analyse wavefunctions

  30. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  Google Scholar 

  31. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384

    Article  CAS  Google Scholar 

  32. Ewald P (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys 64:253–287

    Article  Google Scholar 

  33. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104(11):2477–2489

    Article  CAS  Google Scholar 

  34. Xiao J, Fang G, Ji G, Xiao H (2005) Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives. Chin Sci Bull 50(1):21–26

    Article  CAS  Google Scholar 

  35. Qiu L, Xiao H-M, Zhu W-H, Xiao J-J, Zhu W (2006) Ab initio and molecular dynamics studies of crystalline TNAD (trans-1, 4, 5, 8-tetranitro-1, 4, 5, 8-tetraazadecalin). J Phys Chem B 110(22):10651–10661

    Article  CAS  Google Scholar 

  36. Xu X-J, Xiao H-M, Xiao J-J, Zhu W, Huang H, Li J-S (2006) Molecular dynamics simulations for Pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110(14):7203–7207

    Article  CAS  Google Scholar 

  37. Berkovitch-Yellin Z (1985) Toward an ab initio derivation of crystal morphology. J Am Chem Soc 107(26):8239–8253

    Article  CAS  Google Scholar 

  38. Stoica C, Verwer P, Meekes H, Van Hoof P, Kaspersen F, Vlieg E (2004) Understanding the effect of a solvent on the crystal habit. Cryst Growth Des 4(4):765–768

    Article  CAS  Google Scholar 

  39. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  40. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18(2):541–548

    Article  CAS  Google Scholar 

  41. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35(7):565–573

    Article  CAS  Google Scholar 

  42. Hartman P, Bennema P (1980) The attachment energy as a habit controlling factor: I. Theoretical considerations. J Cryst Growth 49(1):145–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Institute of Industrial Chemistry, Nanjing University of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhu Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Xia, M., Lei, W. et al. A study of the solvent effect on the morphology of RDX crystal by molecular modeling method. J Mol Model 19, 5397–5406 (2013). https://doi.org/10.1007/s00894-013-2033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2033-3

Keywords

Navigation