Skip to main content
Log in

Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the nO→π type—typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 11A, 21A and 81A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans’ energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans’ theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dewar MJS, Ritchie JP, Alster J (1985) J Org Chem 50(7):1031–1036

    Article  CAS  Google Scholar 

  2. Gindulyte A, Massa L, Huang LL, Karle J (1999) J Phys Chem A 103(50):11040–11044

    Article  CAS  Google Scholar 

  3. Bernstein ER (2005) Role of excited electronic states in the decomposition of energetic materials. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials, vol 16. World Scientific, Singapore, p 161

    Chapter  Google Scholar 

  4. Ali AN, Son SF, Asay BW, Sander RK (2005) J Appl Phys 97(6):7

    Article  CAS  Google Scholar 

  5. Williams F (1971) Electronic states of solid explosives and their probable role in detonations. In: Hirschfelder JO, Henderson D (eds) Advances in chemical physics: chemical dynamics: papers in honor of Henry Eyring, vol 21. Wiley, Hoboken, NJ, pp 289–302. doi:10.1002/9780470143698.ch20

  6. Windawi HM, Varma SP, Cooper CB, Williams F (1976) J Appl Phys 47(8):3418–3420

    Article  CAS  Google Scholar 

  7. Sharma J, Beard BC, Chaykovsky M (1991) J Phys Chem 95(3):1209–1213

    Article  CAS  Google Scholar 

  8. Gilman JJ (1995) Philos Mag B-Phys Condens Matter Stat Mech Electron Opt Magn Prop 71(6):1057–1068

    CAS  Google Scholar 

  9. Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) J Appl Phys 89(7):4156–4166

    Article  CAS  Google Scholar 

  10. Harris LE (1973) J Chem Phys 58(12):5615–5626

    Article  CAS  Google Scholar 

  11. Guo YQ, Greenfield M, Bhattacharya A, Bernstein ER (2007) J Chem Phys 127(15):10

    Article  CAS  Google Scholar 

  12. Borges I (2008) Chem Phys 349:256–262

    Article  CAS  Google Scholar 

  13. Bhattacharya A, Guo YQ, Bernstein ER (2010) Acc Chem Res 43(12):1476–1485

    Article  CAS  Google Scholar 

  14. Bhattacharya A, Bernstein ER (2011) J Phys Chem A 115(17):4135–4147

    Article  CAS  Google Scholar 

  15. Szalay PG, Muller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112(1):108–181

    Article  CAS  Google Scholar 

  16. Gonzalez L, Escudero D, Serrano-Andres L (2012) ChemPhysChem 13(1):28–51

    Article  CAS  Google Scholar 

  17. Plasser F, Barbatti M, Aquino AJA, Lischka H (2012) Theor Chem Accounts 131(1):1073

    Article  CAS  Google Scholar 

  18. Singh S (2007) J Hazard Mater 144(1–2):15–28

    Article  CAS  Google Scholar 

  19. Borges I (2008) Theor Chem Accounts 121:239–246

    Article  CAS  Google Scholar 

  20. Borges I, Aquino AJ, Barbatti M, Lischka H (2009) Int J Quantum Chem 109(11):2348–2355

    Article  CAS  Google Scholar 

  21. Borges I, Barbatti M, Aquino AJA, Lischka H (2012) Int J Quantum Chem 112(4):1225–1232

    Article  CAS  Google Scholar 

  22. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Tetrahedron 54(38):11525–11536

    Article  CAS  Google Scholar 

  23. Moraes TF, Borges I (2011) Int J Quantum Chem 111(7–8):1444–1452

    Article  CAS  Google Scholar 

  24. Simkova L, Liska F, Ludvik J (2011) Curr Org Chem 15(17):2983–2995

    Article  CAS  Google Scholar 

  25. Politzer P, Concha MC, Grice ME, Murray JS, Lane P, Habibollazadeh D (1998) THEOCHEM J Mol Struct 452:75–83

    Article  CAS  Google Scholar 

  26. Gindulyte A, Massa L, Huang LL, Karle J (1999) J Phys Chem A 103(50):11045–11051

    Article  CAS  Google Scholar 

  27. Rashkeev SN, Kuklja MM, Zerilli FJ (2003) Appl Phys Lett 82(9):1371–1373

    Article  CAS  Google Scholar 

  28. Kimmel AV, Sushko PV, Shluger AL, Kuklja MM (2007) J Chem Phys 126(23):10

    Article  CAS  Google Scholar 

  29. Kimmel AV, Sushko PV, Shluger AL, Kuklja MM (2008) J Phys Chem A 112(19):4496–4500

    Article  CAS  Google Scholar 

  30. Kimmel AV, Ramo DM, Sushko PV, Shluger AL, Kuklja MM (2009) Phys Rev B 80(13)

  31. Nakatsuji H, Hirao K (1978) J Chem Phys 68(5):2053–2065

    Article  CAS  Google Scholar 

  32. Nakatsuji H (1978) Chem Phys Lett 59(2):362–364

    Article  CAS  Google Scholar 

  33. Nakatsuji H (1979) Chem Phys Lett 67(2–3):329–333

    Article  CAS  Google Scholar 

  34. Nakatsuji H (1979) Chem Phys Lett 67(2–3):334–342

    Article  CAS  Google Scholar 

  35. Hasegawa J, Miyahara T, Nakashima H, Nakatsuji H (2012) SAC-CI methodology applied to molecular spectroscopy and photo-biology. In: Clementi E, Andre JM, McCammon JA (eds) Theory and applications in computational chemistry: the first decade of the second millennium, vol 1456. Aip conference proceedings. American Institute of Physics, Melville, pp 101–108. doi:10.1063/1.4730648

  36. Stanton JF, Bartlett RJ (1993) J Chem Phys 98(9):7029–7039

    Article  CAS  Google Scholar 

  37. Koch H, Jorgensen P (1990) J Chem Phys 93(5):3333–3344

    Article  CAS  Google Scholar 

  38. de Souza GGB, Rocco MLM, Boechat-Roberty HM, Lucas CA, Borges I, Hollauer E (2001) J Phys B Atomic Mol Opt Phys 34(6):1005–1017

    Article  Google Scholar 

  39. Borges I, Rocha AB, Bielschowsky CE (2005) Braz J Phys 35(4A):971–980

    Article  CAS  Google Scholar 

  40. Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  41. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  42. Dunning TH (1989) J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  43. Feller D (1996) J Comput Chem 17(13):1571–1586

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi B, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski J, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith TJ, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02 edn. Gaussian, Pittsburgh

    Google Scholar 

  45. Borges I (2006) Chem Phys 328(1–3):284–290

    Article  CAS  Google Scholar 

  46. Borges I (2006) J Phys B Atomic Mol Opt Phys 39(3):641–650

    Article  CAS  Google Scholar 

  47. Martin RL, Shirley DA (1976) J Chem Phys 64(9):3685–3689

    Article  CAS  Google Scholar 

  48. Suzer S, Lee ST, Shirley DA (1976) Phys Rev A 13(5):1842–1849

    Article  CAS  Google Scholar 

  49. Elsayed MA (1963) J Chem Phys 38(12):2834

    Article  CAS  Google Scholar 

  50. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH, New York

    Google Scholar 

  51. Dorsett H (2000) DSTO aeronautical and maritime research laboratory, DSTO-TR-1054

  52. Orchin M, Jaffe HH (1971) Symmetry, orbitals and spectra. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgments

I thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Faperj (the State Agency of Rio de Janeiro for funding research) and the Brazilian Army, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Borges Jr..

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, I. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7. J Mol Model 20, 2095 (2014). https://doi.org/10.1007/s00894-014-2095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2095-x

Keywords

Navigation