Skip to main content
Log in

Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, mechanical, electronic, and optical properties of orthorhombic Bi2S3 and Bi2Se3 compounds have been investigated by means of first principles calculations. The calculated lattice parameters and internal coordinates are in very good agreement with the experimental findings. The elastic constants are obtained, then the secondary results such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factor, and Debye temperature of polycrystalline aggregates are derived, and the relevant mechanical properties are also discussed. Furthermore, the band structures and optical properties such as real and imaginary parts of dielectric functions, energy-loss function, the effective number of valance electrons, and the effective optical dielectric constant have been computed. We also calculated some nonlinearities for Bi2S3 and Bi2Se3 (tensors of elasto-optical coefficients) under pressure.

Energy spectra of dielectric function and energy-loss function (L) along the x- and z-axes for Bi2S3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ryu S, Schnyder AP, Furusaki A, Ludwing AWW (2010) New J Phys 12:065010.1–065010.60

    Google Scholar 

  2. Zhang W, Yu R, Zhang HJ, Dai X, Fang Z (2010) New J Phys 12:065013.1–065013.14

    Google Scholar 

  3. Zhang H, Liu CH, Qi XL, Dai X, Fang Z, Zhang SC (2009) Nat Phys 5:438–442

    Article  CAS  Google Scholar 

  4. Liang, Kane CL, Mele EJ (2007) Phys Rev Lett 98:106803.1–106803.4

    Article  CAS  Google Scholar 

  5. Suarez R, Nair PK, Kamat PV (1998) Langmuir 14:3236–3241

    Article  CAS  Google Scholar 

  6. Chen B, Uher C (1997) Chem Mater 9:1655–1658

    Article  CAS  Google Scholar 

  7. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) Nat Mater 5:118–122

    Article  CAS  Google Scholar 

  8. Zhang B, Ye X, Hou W, Zhao Y, Xie YJ (2006) J Phys Chem B 110:8978–8985

    Article  CAS  Google Scholar 

  9. Li L, Cao R, Wang Z, Li J, Qi L (2009) J Phys Chem C 113:18075–18081

    Article  CAS  Google Scholar 

  10. Black J, Conwell EM, Seigle L, Spenser W (1957) J Phys Chem Solids 2:240–251

    Article  CAS  Google Scholar 

  11. Riley DJ, Waggett JP, Wijayantha KGU (2003) J Mat Chem 14:704–708

    Article  CAS  Google Scholar 

  12. Cademartiri L, Malakooti R, Brien PGO, Migliori A, Petrov S (2008) Angew Chem Int Ed 20:3811–3817

    Google Scholar 

  13. Begum A, Hussain A, Rahman A (2011) Mater Sci Appl 2:163–168

    CAS  Google Scholar 

  14. Gordyakova GN, Sinani SS (1958) Sh Tekh Fiz 28:977–988

    CAS  Google Scholar 

  15. Shah MP, Holmberg SH, Kostylev SA (1973) Phys Rev Lett 31:542–545

    Article  Google Scholar 

  16. Keneman SA (1971) Appl Phys Lett 19:205–207

    Article  CAS  Google Scholar 

  17. Goto N, Ashikawa MJ (1970) Non-Cryst Solids 4:378–379

    Article  Google Scholar 

  18. Tokwda W, Katoh T, Yasumori A (1974) J Appl Phys 45:5098–5099

    Article  Google Scholar 

  19. Frerich RJ (1953) Opt Soc Am 43(1953):1153–1157

    Article  Google Scholar 

  20. Kolomiets BT, Pavlov BV (1960) Soc Phys Solid State 2:592–597

    Google Scholar 

  21. Ghosh B, Kothiyal GP (1983) Prog Cryst Growth Charact 6:393–413

    Article  CAS  Google Scholar 

  22. Han Q, Chen J, Yang X, Lu L, Wan X (2007) J Phys Chem C 111:14072–14077

    Article  CAS  Google Scholar 

  23. Caracas R, Gonze X (2005) Phys Chem Miner 32:295–300

    Article  CAS  Google Scholar 

  24. Sharma Y, Srivastava P, Dashora A, Vadkhiya L, Bhayani MK, Jain R, Jani AR, Ahuja BL (2012) Solid State Sci 14:241–249

    Article  CAS  Google Scholar 

  25. Sharma Y, Srivastava P (2010) AIP Conf Proc 1249:183

    Article  CAS  Google Scholar 

  26. Olsen LA, López-Solano J, García A, Balić-Žunic T, Makovicky E (2010) J Solid State Chem 183:2133–2143

    Article  CAS  Google Scholar 

  27. Filip MR, Patrick CE, Giustino F (2013) Phys Rev B 87:205125.1–205125.11

    Article  CAS  Google Scholar 

  28. Zhao Y, Chua KTE, Gan CK, Zhang J, Peng B, Peng Z, Xion Q (2011) Phys Rev B 84:205330.1–205330.8

    Google Scholar 

  29. Hasan MZ, Kane CL (2010) Rev Mod Phys 82:3045–3067

    Article  CAS  Google Scholar 

  30. Molotkov SN, Potapov TA (2013) JETP Lett 98:298–303

    Article  CAS  Google Scholar 

  31. Sankey OF, Niklewski DJ (1989) Phys Rev B 40:3979–3995

    Article  Google Scholar 

  32. Ordejόn P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441–R10444

    Article  Google Scholar 

  33. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matt 14:2745–2779

    Article  CAS  Google Scholar 

  34. Kohn JW, Sham LJ (1965) Phys Rev 140(1965):A1133–A1138

    Article  Google Scholar 

  35. Ceperley DM, Adler MJ (1980) Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  36. Perdew P, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  37. Troullier N, Martin JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  38. Kresse G, Hafner J (1994) Phys Rev B 47:558–561

    Article  Google Scholar 

  39. Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  42. Blochl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  44. Kanishcheva AS, Mikhailav YN, Trippel AF (1981) Izv Akad Nauk SSSR Neorg Mater 17:1972–1975

    CAS  Google Scholar 

  45. Atabaeva EY, Mashkov SA, Popov SV (1973) Kristallografiya 18:173–174

    CAS  Google Scholar 

  46. Murnaghan FD (1944) Proc Natl Acad Sci U S A 50:244–247

    Article  Google Scholar 

  47. Deligoz E, Ozisik H, Colakoglu K, Surucu G, Ciftci YO (2011) J Alloy Comp 509:1711–1715

    Article  CAS  Google Scholar 

  48. Ateser E, Ozisik H, Colakoglu K, Deligoz E (2011) Comp Mater Sci 50:3208–3212

    Article  CAS  Google Scholar 

  49. Wallace DC (1972) Thermodynamics of Crystals, Chap. 1, where finite Lagrangian strains ηij are discussed. In the case of infinitesimal strains these reduce to our εij of classical elasticity theory. Wiley, New York

  50. Le Page Y, Saxe P (2001) Phys Rev B 63:174103.1–174103.8

    Google Scholar 

  51. Beckstein O, Klepeis JE, Hart GLW, Pankratov O (2001) Phys Rev B 63:134112.1–134112.12

    Article  CAS  Google Scholar 

  52. Voight W (1928) Lehrbook der kristallphysik. Teubner, Leipzig, p 962

  53. Reuss AZ (1929) Angew Math Mech 9:49–58

    Article  CAS  Google Scholar 

  54. Hill R (1952) Proc Phys Soc London Sect A 65:349–354

    Article  Google Scholar 

  55. Panda KB, Chandran KSR (2006) Acta Mater 54(2006):1641–1657

    Article  CAS  Google Scholar 

  56. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) J Appl Phys 84:4891–4904

    Article  CAS  Google Scholar 

  57. Koc H, Mamedov AM, Deligoz E, Ozisik H (2012) Solid State Sci 14:1211–1220

    Article  CAS  Google Scholar 

  58. Koc H, Deligöz E, Mamedov AM (2011) Phys Mag 91:3093–3107

    Article  CAS  Google Scholar 

  59. Shein IR, Ivanovskii AL (2008) J Phys Considens Matter 20:415218.1–415218.9

    Google Scholar 

  60. Pogh SF (1954) Philos Mag 45:833–838

    Google Scholar 

  61. Bannikov VV, Shein IR, Ivanovskii AL (2007) Phys Stat Sol (RRL) 3:89–91

    Article  CAS  Google Scholar 

  62. Fu H, Li D, Eng F, Gao T, Cheng X (2008) Comp Mater Sci 44:774–778

    Article  CAS  Google Scholar 

  63. Tvergaard V, Hutchinson JW (1988) J Am Chem Soc 71:157–166

    CAS  Google Scholar 

  64. Chung DH, Buessem WR (1968) In: Vahldiek FW, Mersol SA (eds) Anisotropy in single crystal refractory compounds. Plenum, New York, p 217

  65. Johnston I, Keeler G, Rollins R, Spicklemire S (1996) Solids state physics simulations, the consortium for upperlevel physics software. Wiley, New York

    Google Scholar 

  66. Anderson OL (1963) J Phys Chem Solids 24:909–917

    Article  CAS  Google Scholar 

  67. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurements. McGraw-Hill, New York

    Google Scholar 

  68. Chen X-Q, Niu H, Li D, Li Y (2011) Intermetallics 19:1275–1281

    Article  CAS  Google Scholar 

  69. Mahmoud S, Eid AH, Omar H (1997) Fizika A 6:111–120

    CAS  Google Scholar 

  70. Al-Douri AAJ, Madik MP (2000) Renew Energy 21:411–416

    Article  CAS  Google Scholar 

  71. Qui XF, Austin LN, Muscarella PA, Dyck JS, Burda C (2006) Angew Chem Int Ed 45:5656–5659

    Article  CAS  Google Scholar 

  72. Yesugade NS, Lokhande CD, Bhosak CH (1955) Thin Solid Films 263:145–149

    Article  Google Scholar 

  73. Wemple SH, Di Domenico M (1970) Phys Rev B 1:193–202

    Google Scholar 

  74. Levine ZH, Allan DC (1989) Phys Rev Lett 63:1719–1722

    Article  CAS  Google Scholar 

  75. Philipp HR, Ehrenreich H (1963) Phys Rev 129:1550–1560

    Article  CAS  Google Scholar 

  76. Koc H, Mamedov AM, Ekmel O (2013) Ferroelectrics 448:29–41

    Article  CAS  Google Scholar 

  77. Kovalev OV (1965) Representations of the crystallographic space groups. Irreducible representations induced representations and corepresentations. Gordon and Breach, Amsterdam

  78. Marton L (1956) Rev Mod Phys 28:172–183

    Article  CAS  Google Scholar 

  79. Kohn ES (1969) J Appl Phys 40:2608–2613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husnu Koc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koc, H., Ozisik, H., Deligöz, E. et al. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. J Mol Model 20, 2180 (2014). https://doi.org/10.1007/s00894-014-2180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2180-1

Keywords

Navigation