Skip to main content
Log in

Adsorption of HCN on reduced graphene oxides: a first–principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interactions between HCN and reduced graphene oxides (rGO) are investigated using first-principles calculations with M06-2X functional. The results show that the adsorption of HCN on rGO is generally stronger than that on graphene, which is due to the presence of the active defect sites in rGO, such as the hydroxyl, epoxide, and carboxyl functional groups and even the carbon atom near these groups. The interaction between HCN and rGO with oxygen-containing group can result in the formation of hydrogen bonds, N · · · H and O · · · H. The adsorption of HCN on rGO depends on the type and location of oxygen-containing group in rGO. Carboxyl group on rGO is much more attractive for HCN than hydroxyl and epoxide group. The adsorption of HCN is much stronger in rGO with oxygen-containing group on the surface than that at the edge. The adsorption of HCN on rGO with carboxyl attached to vacancy on the surface is the strongest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) ACS Nano 3:301–306

    Article  CAS  Google Scholar 

  3. Shen F, Wang D, Liu R, Pei X, Zhang T, Jin J (2013) Nanoscale 5:537–540

    Article  CAS  Google Scholar 

  4. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  5. Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH (2013) Nanoscale 5:52–71

    Article  CAS  Google Scholar 

  6. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475

    Article  CAS  Google Scholar 

  7. Kayhan E, Prasad RM, Gurlo A, Yilmazoglu O, Engstler J, Ionescu E, Yoon S, Weidenkaff A, Schneider JJ (2012) Chem Eur J 18:14996–15003

    Article  CAS  Google Scholar 

  8. Li W, Zhang LS, Wang Q, Yu Y, Chen Z, Cao CY, Song WG (2012) J Mater Chem 22:15342–15347

    Article  CAS  Google Scholar 

  9. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  10. Yavari F, Castillo E, Gullapalli H, Ajayan PM, Koratkar N (2012) Appl Phys Lett 100:203120

    Article  CAS  Google Scholar 

  11. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu BL, Duan W (2008) J Phys Chem C 112:13442–13446

  12. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416

    Article  CAS  Google Scholar 

  13. Nagare BJ, Habale D, Chacko S, Ghosh S (2012) J Mater Chem 22:22013–22021

    Article  CAS  Google Scholar 

  14. Okamoto Y, Miyamoto Y (2001) J Phys Chem B 105:3470–3474

    Article  CAS  Google Scholar 

  15. Tang S, Cao Z (2011) J Chem Phys 134:044710

    Article  CAS  Google Scholar 

  16. Tang S, Cao Z (2012) J Phys Chem C 116:8778–8791

    Article  CAS  Google Scholar 

  17. Junkermeier CE, Solenov D, Reinecke TL (2013) J Phys Chem C 117:2793–2798

    Article  CAS  Google Scholar 

  18. Oubal M, Picaud S, Rayez MT, Rayez JC (2010) Surf Sci 604:1666–1673

    Article  CAS  Google Scholar 

  19. Oubal M, Picaud S, Rayez MT, Rayez JC (2010) Carbon 48:1570–1579

    Article  CAS  Google Scholar 

  20. Lamari FD, Levesque D (2011) Carbon 49:5196–5200

    Article  CAS  Google Scholar 

  21. Zhang YH, Han LF, Xiao YH, Jia DZ, Guo ZH, Li F (2013) Comput Mater Sci 69:222–228

    Article  CAS  Google Scholar 

  22. Lopez-Corral I, German E, Juan A, Volpe MA, Brizuela GP (2012) Int J Hydrogen Energy 37:6653–6665

    Article  CAS  Google Scholar 

  23. Huang Q, Zeng D, Tian S, Xie C (2012) Mater Lett 83:76–79

    Article  CAS  Google Scholar 

  24. Hamad S, Mejias JA, Lago S, Picaud S, Hoang PNM (2004) J Phys Chem B 108:5405–5409

    Article  CAS  Google Scholar 

  25. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457–460

    Article  CAS  Google Scholar 

  26. Chen D, Feng H, Li J (2012) Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  27. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  28. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Nano Lett 8:3137–3140

    Article  CAS  Google Scholar 

  29. Collignon B, Hoang PNM, Picaud S, Rayez JC (2005) Chem Phys Lett 406:430–435

    Article  CAS  Google Scholar 

  30. Konwer S, Guha AK, Dolui SK (2013) J Mater Sci 48:1729–1739

    Article  CAS  Google Scholar 

  31. Zhang LS, Wang WD, Liang XQ, Chu WS, Song WG, Wang W, Wu ZY (2011) Nanoscale 3:2458–2460

    Article  CAS  Google Scholar 

  32. Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L (2013) J Phys Chem C 117:10683–10690

    Article  CAS  Google Scholar 

  33. Mattson EC, Pande K, Unger M, Cui SM, Lu GH, Gajdardziska-Josifovska M, Weinert M, Chen JH, Hirschmugl CJ (2013) J Phys Chem C 117:10698–10707

    Article  CAS  Google Scholar 

  34. Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J (2011) ACS Nano 5:1154–1164

    Article  CAS  Google Scholar 

  35. Zhang YM, Zhang DJ, Liu CB (2006) J Phys Chem B 110:4671–4674

    Article  CAS  Google Scholar 

  36. Zhou X, Tian WQ (2011) J Phys Chem C 115:11493–11499

    Article  CAS  Google Scholar 

  37. Wang RX, Zhang DJ, Liu YJ, Liu CB (2009) Nanotechnology 20:505704

    Google Scholar 

  38. Peyghan AA, Hadipour NL, Bagheri Z (2013) J Phys Chem C 117:2427–2432

    Article  CAS  Google Scholar 

  39. Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) J Phys Chem C 112:15985–15988

    Article  CAS  Google Scholar 

  40. Rastegar SF, Peyghan AA, Hadipour NL (2013) Appl Surf Sci 265:412–417

    Article  CAS  Google Scholar 

  41. Frisch MJGWT, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Catak S, D’Hooghe M, De Kimpe N, Waroquier M, Van Speybroeck V (2010) J Org Chem 75:885–896

    Article  CAS  Google Scholar 

  45. Catak S, Hemelsoet K, Hermosilla L, Waroquier M, Van Speybroeck V (2011) Chem Eur J 17:12027–12036

    Article  CAS  Google Scholar 

  46. Peter P, Kevin ER, Felipe AB, Jane SM (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  47. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116:5499–5508

    Article  CAS  Google Scholar 

  48. Umadevi D, Sastry GN (2011) J Phys Chem C 115:9656–9667

    Article  CAS  Google Scholar 

  49. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  50. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

  51. Wang C, Zhou G, Wu J, Gu BL, Duan W (2006) Appl Phys Lett 89:173130

    Google Scholar 

  52. Al-Aqtash N, Vasiliev I (2009) J Phys Chem C 113:12970–12975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the Natural Science Foundation of China (Grant 21075083, 21345001) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Xiao or Yong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data

Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue (sign(λ 2)ρ) are available (DOC 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Yang, F., Xue, Y. et al. Adsorption of HCN on reduced graphene oxides: a first–principles study. J Mol Model 20, 2214 (2014). https://doi.org/10.1007/s00894-014-2214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2214-8

Keywords

Navigation