Skip to main content
Log in

Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the “surface H2O” constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage. The “interlayer H2O” constructs the network by hydrogen bonds, forming the interlayer cage. CH4 molecules and their surrounding H2O molecules form clathrate hydrates. The cation of montmorillonite has a steric effect on constructing the network and destroying the balance of hydrogen bonds between the H2O molecules, distorting the cage of hydrate in clay. Therefore, the cages are irregular, which is unlike the ideal CH4 clathrate hydrates cage. The pore size of montmorillonite is another impact factor to the hydrate formation. It is quite easier to form CH4 hydrate nucleation in montmorillonite with large pore size than in montmorillonite with small pore. The MD work provides the constructive information to the investigation of the reservoir formation for natural gas hydrate (NGH) in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426:353–359. doi:10.1038/Nature02135

    Article  CAS  Google Scholar 

  2. Dallimore SR, Uchida T, Collett T (1999) Scientific results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada, vol 544. Geological Survey of Canada

  3. Dallimore S, Collett T (2005) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada

  4. Paull CK, Matsumoto R 1. Leg 164 overview. In: Proceedings of the Ocean Drilling Program. Scientific Results, 2000. Ocean Drilling Program, pp 3–10

  5. Acharyya SK (2009) Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Appl Geochem 24(1):184–185. doi:10.1016/j.apgeochem.2008.11.003

    Article  CAS  Google Scholar 

  6. Chand S, Minshull TA (2004) The effect of hydrate content on seismic attenuation: a case study for Mallik 2 L-38 well data, Mackenzie delta, Canada. Geophys Res Lett 31(14), L14609. doi:10.1029/2004gl020292

  7. Riedel M, Bellefleur G, Dallimore S, Taylor A, Wright J (2006) Amplitude and frequency anomalies in regional 3D seismic data surrounding the Mallik 5 L-38 research site, Mackenzie Delta, Northwest Territories, Canada. Geophysics 71(6):B183–B191

    Article  Google Scholar 

  8. Reardon S (2013) Japan taps ‘fiery ice’ fuel from seabed [EB]. New Sci http://www.newscientist.com/

  9. Guan JN, Liang DQ, Wu NY, Fan SS (2009) The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone. J Asian Earth Sci 36(4–5):277–288. doi:10.1016/j.jseaes.2009.05.008

    Article  Google Scholar 

  10. Hickman SH, Hsieh PA, Mooney WD, Enomoto CB, Nelson PH, Mayer LA, Weber TC, Moran K, Flemings PB, McNutt MK (2012) Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout. Proc Natl Acad Sci U S A 109(50):20268–20273

    Article  CAS  Google Scholar 

  11. Buffett BA, Zatsepina OY (2000) Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol 164(1–2):69–77. doi:10.1016/S0025-3227(99)00127-9

    Article  CAS  Google Scholar 

  12. Uchida T, Ebinuma T, Takeya S, Nagao J, Narita H (2001) Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media. J Phys Chem B 106(4):820–826. doi:10.1021/jp012823w

    Article  Google Scholar 

  13. Zhou Y, Castaldi MJ, Yegulalp TM (2009) Experimental investigation of methane gas production from methane hydrate. Ind Eng Chem Res 48(6):3142–3149. doi:10.1021/ie801004z

    Article  CAS  Google Scholar 

  14. Chuvilin E, Yakushev V, Perlova E (1999) Experimental study of gas hydrate formation in porous media. In: Hutter K, Wang Y, Beer H (eds) Advances in cold-region thermal engineering and sciences. Springer, Berlin, Heidelberg, pp 431–440. doi:10.1007/BFb0104201

    Chapter  Google Scholar 

  15. Kleinberg RL, Flaum C, Griffin DD, Brewer PG, Malby GE, Peltzer ET, Yesinowski JP (2003) Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J Geophys Res 108(B10):2508. doi:10.1029/2003jb002389

    Article  Google Scholar 

  16. Linga P, Haligva C, Nam SC, Ripmeester JA, Englezos P (2009) Gas hydrate formation in a variable volume bed of silica sand particles. Energy Fuels 23(11):5496–5507. doi:10.1021/ef900542m

    Article  CAS  Google Scholar 

  17. Kneafsey TJ, Tomutsa L, Moridis GJ, Seol Y, Freifeld BM, Taylor CE, Gupta A (2007) Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. J Petrol Sci Eng 56(1–3):108–126. doi:10.1016/j.petrol.2006.02.002

    Article  CAS  Google Scholar 

  18. Kowalsky MB, Moridis GJ (2007) Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media. Energ Convers Manage 48(6):1850–1863. doi:10.1016/j.enconman.2007.01.017

    Article  CAS  Google Scholar 

  19. Klauda JB, Sandler SI (2001) Modeling gas hydrate phase equilibria in laboratory and natural porous media. Ind Eng Chem Res 40(20):4197–4208. doi:10.1021/ie000961m

    Article  CAS  Google Scholar 

  20. Sun X, Mohanty KK (2006) Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem Eng Sci 61(11):3476–3495. doi:10.1016/j.ces.2005.12.017

    Article  CAS  Google Scholar 

  21. Rempel AW, Buffett BA (1997) Formation and accumulation of gas hydrate in porous media. J Geophys Res: Solid Earth 102(B5):10151–10164. doi:10.1029/97jb00392

    Article  CAS  Google Scholar 

  22. Wilder JW, Seshadri K, Smith DH (2001) Modeling hydrate formation in media with broad pore size distributions. Langmuir 17(21):6729–6735. doi:10.1021/la010377y

    Article  CAS  Google Scholar 

  23. Pirzadeh P, Kusalik PG (2013) Molecular insights into clathrate hydrate nucleation at an ice–solution interface. J Am Chem Soc 135(19):7278–7287. doi:10.1021/ja400521e

    Article  CAS  Google Scholar 

  24. Nada H (2006) Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system. J Phys Chem B 110(33):16526–16534

    Article  CAS  Google Scholar 

  25. Liang SA, Kusalik PG (2010) Crystal growth simulations of H2S hydrate. J Phys Chem B 114(29):9563–9571. doi:10.1021/Jp102584d

    Article  CAS  Google Scholar 

  26. Liang SA, Kusalik PG (2010) Explorations of gas hydrate crystal growth by molecular simulations. Chem Phys Lett 494(4–6):123–133. doi:10.1016/j.cplett.2010.05.088

    Article  CAS  Google Scholar 

  27. Vatamanu J, Kusalik PG (2010) Observation of two-step nucleation in methane hydrates. Phys Chem Chem Phys 12(45):15065–15072

    Article  CAS  Google Scholar 

  28. Vatamanu J, Kusalik PG (2006) Molecular insights into the heterogeneous crystal growth of sI methane hydrate. J Phys Chem B 110(32):15896–15904

    Article  CAS  Google Scholar 

  29. Vatamanu J, Kusalik PG (2006) Unusual crystalline and polycrystalline structures in methane hydrates. J Am Chem Soc 128(49):15588–15589. doi:10.1021/ja066515t

    Article  CAS  Google Scholar 

  30. Liang S, Kusalik PG (2011) Exploring nucleation of H2S hydrates. Chem Sci 2(7):1286–1292. doi:10.1039/C1sc00021g

    Article  CAS  Google Scholar 

  31. Bai DS, Chen GJ, Zhang XR, Wang WC (2011) Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces. Langmuir 27(10):5961–5967. doi:10.1021/la105088b

    Article  CAS  Google Scholar 

  32. Liang S, Rozmanov D, Kusalik PG (2011) Crystal growth simulations of methane hydrates in the presence of silica surfaces. Phys Chem Chem Phys 13(44):19856–19864. doi:10.1039/c1cp21810g

    Article  CAS  Google Scholar 

  33. Park SH, Sposito G (2003) Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations. J Phys Chem B 107(10):2281–2290

    Article  CAS  Google Scholar 

  34. Cygan RT, Guggenheim S, van Groos AFK (2004) Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay. J Phys Chem B 108(39):15141–15149

    Article  CAS  Google Scholar 

  35. Martos-Villa R, Mata MP, Sainz-Díaz CI (2014) Characterization of CO2 and mixed methane/CO2 hydrates intercalated in smectites by means of atomistic calculations. J Mol Graph Model 49(0):80–90. doi:10.1016/j.jmgm.2014.01.008

    Article  CAS  Google Scholar 

  36. Martos-Villa R, Guggenheim S, Mata MP, Sainz-Díaz CI, Nieto F (2014) Interaction of methane hydrate complexes with smectites: experimental results compared to molecular models. Am Mineral 99(2–3):401–414. doi:10.2138/am.2014.4570

    Article  Google Scholar 

  37. Skipper NT, Chang FRC, Sposito G (1995) Monte-Carlo simulation of interlayer molecular-structure in swelling clay-minerals. 1. Methodology. Clay Clay Miner 43(3):285–293

    Article  CAS  Google Scholar 

  38. Chavez-Paez M, Van Workum K, de Pablo L, de Pablo JJ (2001) Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. J Chem Phys 114(3):1405–1413

    Article  CAS  Google Scholar 

  39. Guggenheim S, van Groos AFK (2003) New gas-hydrate phase: synthesis and stability of clay-methane hydrate intercalate. Geology 31(7):653–656

    Article  CAS  Google Scholar 

  40. Titiloye JO, Skipper NT (2000) Computer simulation of the structure and dynamics of methane in hydrated Na-smectite clay. Chem Phys Lett 329(1–2):23–28

    Article  CAS  Google Scholar 

  41. Cygan RT, Liang JJ, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108(4):1255–1266

    Article  CAS  Google Scholar 

  42. Zhou Q, Lu XC, Liu XD, Zhang LH, He HP, Zhu JX, Yuan P (2011) Hydration of methane intercalated in Na-smectites with distinct layer charge: insights from molecular simulations. J Colloid Interf Sci 355(1):237–242. doi:10.1016/j.jcis.2010.11.054

    Article  CAS  Google Scholar 

  43. Yang NN, Yang XN (2011) Molecular simulation of swelling and structure for Na-Wyoming montmorillonite in supercritical CO2. Mol Simul 37(13):1063–1070. doi:10.1080/08927022.2010.547939

    Article  CAS  Google Scholar 

  44. Morrow CP, Yazaydin AÖ, Krishnan M, Bowers GM, Kalinichev AG, Kirkpatrick RJ (2013) Structure, energetics, and dynamics of smectite clay interlayer hydration: molecular dynamics and metadynamics investigation of Na-hectorite. J Phys Chem C 117(10):5172–5187. doi:10.1021/jp312286g

    Article  CAS  Google Scholar 

  45. Myshakin EM, Saidi WA, Romanov VN, Cygan RT, Jordan KD (2013) Molecular dynamics simulations of carbon dioxide intercalation in hydrated Na-montmorillonite. J Phys Chem C 117(21):11028–11039. doi:10.1021/jp312589s

    Article  CAS  Google Scholar 

  46. Berendsen HJC, Postma JPM, Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces, vol 14. The Jerusalem Symposia on Quantum Chemistry and Biochemistry. Springer, Netherlands, pp 331–342. doi:10.1007/978-94-015-7658-1_21

    Google Scholar 

  47. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  48. Karaborni S, Smit B, Heidug W, Urai J, Oort E (1996) The swelling of clays: molecular simulations of the hydration of montmorillonite. Science 271(5252):1102–1104

    Article  CAS  Google Scholar 

  49. de Pablo L, Chavez ML, Sum AK, de Pablo JJ (2004) Monte Carlo molecular simulation of the hydration of Na-montmorillonite at reservoir conditions. J Chem Phys 120(2):939–946. doi:10.1063/1.1631440

    Article  Google Scholar 

  50. Cases JM, Berend I, Besson G, Francois M, Uriot JP, Thomas F, Poirier JE (1992) Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonite.1. The sodium-exchanged form. Langmuir 8(11):2730–2739. doi:10.1021/La00047a025

    Article  CAS  Google Scholar 

  51. Boek ES, Coveney PV, Skipper NT (1995) Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites. Langmuir 11(12):4629–4631

    Article  CAS  Google Scholar 

  52. Yeon SH, Seol J, Seo YJ, Park Y, Koh DY, Park KP, Huh DG, Lee J, Lee H (2009) Effect of interlayer ions on methane hydrate formation in clay sediments. J Phys Chem B 113(5):1245–1248

    Article  CAS  Google Scholar 

  53. Chialvo AA, Houssa M, Cummings PT (2002) Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates. J Phys Chem B 106(2):442–451

    Article  CAS  Google Scholar 

  54. Geng CY, Wen H, Zhou H (2009) Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2. J Phys Chem A 113(18):5463–5469. doi:10.1021/Jp811474m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support from the National Science Fund for Distinguished Young Scholars of China (51225603), the National Natural Science Foundation of China (21106144, 51376184 and 51306188), the Science & Technology Program of Guangzhou (2012 J5100012), and Key Arrangement Programs of the Chinese Academy of Sciences (KGZD-EW-301-2). The authors also acknowledge computational resources made available via the Supercomputing Center of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoSen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Li, X., Xu, C. et al. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite. J Mol Model 20, 2311 (2014). https://doi.org/10.1007/s00894-014-2311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2311-8

Keywords

Navigation